ACTIVITY REPORT
2020-2021
The access point to develop electronic components and systems
Dear customers, colleagues and friends,

What a year it has been! Who could have imagined that a worldwide pandemic would fall upon us in 2020. We sincerely hope that you have all managed to stay safe during this turbulent period. Even though it has been an unusual and difficult time, EUROPRACTICE has uninterruptedly continued to support its customers with access to microsystem technologies. The achievements obtained in 2020 are summarized in the new EUROPRACTICE Activity Report 2020-2021, which is in your hands now. We hope you will enjoy reading it and looking forward together with us to the new year where we can slowly return to normality.

Even though the majority of 2020 was affected by a global pandemic and related restrictions, it has been a very busy year. We realized a total of 896 design submissions in a wide range of technologies with 80% of the designs submitted by European universities, research institutes and companies. EUROPRACTICE offers a good technology mix for its customers. Advanced technologies, older technology nodes and More-than-Moore technologies are all used in significant volume by our customers. Notably, the total number of design submissions is slightly higher than for the previous year, which is remarkable for such an unusually difficult year as 2020. It demonstrates that research and innovation could continue at the same pace, and EUROPRACTICE together with its foundry partners have continued to support its customers despite the COVID-19 restrictions.

In 2020, the outreach activities from EUROPRACTICE were severely impacted by the global pandemic. Except for MEMS2020 and ISSCC2020, which were organized in January and February, all other conferences and exhibitions had to turn to a virtual format. Such online conferences and fairs have proven to be not as effective as their physical counterparts. EUROPRACTICE anticipated this by increasing its digital presence. For instance, regular news and updates were posted on our EUROPRACTICE LinkedIn account focusing on enlarging and strengthening our user community. Next to that, different webinar series were organized to create awareness in emerging fields such as Silicon Photonics, Microfluidics and Advanced Packaging. The majority of those webinars are uploaded to our YouTube channel, where anyone interested in those topics can watch them at their convenience. When it became clear that COVID-19 restrictions would remain for some considerable time, existing physical training courses were reconfigured and adapted so they could be presented online as live instructor-led training including (where appropriate) hands-on practical sessions using remotely accessible design tool environments.

In 2021, EUROPRACTICE will continue to deliver a high-quality service to customers. Thanks to the results of the customer survey, which has been conducted at the end of last year, we know even better how we can improve and enhance our services for the entire user community. Customers can access new technologies which were recently added to our portfolio, such as the Si-Photonics processes from LioniX International and CORNERSTONE. New virtual training courses and webinars will be developed and presented to a broad range of users, including traditional electronic sectors and non-traditional sectors (such as MedTech). Moreover, in 2021 the enhanced service offering towards smart system integration will be put more in the spotlight. Ultimately, EUROPRACTICE will act as a true one-stop shop for technologies enabling fully integrated systems and providing direct routes for industrial up-scaling of those systems. Consequently, it will contribute to creating and sustaining new jobs in Europe, especially in the areas of design and fabrication of microelectronic components and systems.

We thank the European Commission (DG Connect) for their support. In 2021, we will work towards an extension of our program within Horizon Europe. The EC funding ensures that we hold our commitment to continue the EUROPRACTICE service and to offer the European academic institutions and SMEs easy and affordable access to state-of-the-art design tools and IC technologies.

Finally, we thank all of you – our academic and industrial customers, our technology and design tool suppliers – for supporting our services, and we wish you all a more ‘normal’ 2021.

Looking forward to supporting your innovative projects and creating more success stories together.

Romano Hoofman (EUROPRACTICE General Manager)
On behalf of the entire EUROPRACTICE team at imec, UKRI-STFC, FhG-IIS, CMP and Tyndall
Table of Contents

Foreword ... 1

EUROPRACTICE Services: The access point for electronic components and systems 3

- EUROPRAC TiCE business model .. 4
- Affordable access to state-of-the-art CAD tools ... 5
- Easy access to prototyping for ASICs, MEMS and Photonics ... 6
- Multi-Project-Wafer and mini@sic runs .. 6
- Technology portfolio ... 7
- Multi-Level Mask single user runs ... 8
- Standard packaging ... 8
- Advanced packaging and smart system integration .. 9
- From prototypes to volume production ... 10
- Training in design tools and technologies ... 11
- Webinars ... 12
- Outreach and communication .. 13

Results 2020: MPW prototyping services ... 15

User Stories on Prototyped Designs ... 18

EUROPRACTICE Membership / List per Country ... 53
EUROPRACTICE services

The access point for electronic components and systems

EUROPRACTICE offers a platform to develop electronic circuits and smart integrated systems. For more than 25 years, we have provided the European academia and industry with affordable access to a wide range of CAD tools, training courses and state-of-the-art fabrication technologies. We support customers in all critical steps on the way from prototype design to volume production.

Our offer

A true one-stop shop, EUROPRACTICE provides all range of services needed to design and fabricate electronic devices and systems, complemented by extensive customer support:

- Affordable access to industry-standard and state-of-the-art design (CAD) tools, especially for European academia and SMEs
- Prototyping in multiple technologies, such as ASICs, Photonics and MEMS, via Multi-Project-Wafer (MPW) runs
- Smart system integration and advanced packaging
- Route to a small-volume production, including test and characterization services
- Training courses and webinars in design flows and on various technologies

Our story

EUROPRACTICE was launched by the European Commission in 1995 succeeding its forerunner EUROCHIP (1989-1995). The service aimed to enhance European industrial competitiveness in the global marketplace by opening easy access to design tools and IC prototyping.

Since its creation, EUROPRACTICE has bridged the gap between academia and industry in the high-tech world by supporting more than 600 European universities and research institutes, and over 300 SMEs.

Our current consortium members are imec (Belgium), UKRI-STFC (UK), Fraunhofer IIS (Germany), CMP (France) and Tyndall (Ireland). The two latter partners have joined the EUROPRACTICE consortium and reinforced it with their expertise at the start of the NEXTS project.

NEXTS is a three-year H2020 project funded by European Commission, addressing the call topic ICT-07-2018: Electronic Smart Systems (ESS). NEXTS stands for “Next EUROPRACTICE eXtended Technologies and Services” as it continues and expands a well-established EUROPRACTICE service portfolio.

In NEXTS, we extend our support to the European SMEs and startups, in particularly those originating from universities and research labs. In addition, we encourage customers to adopt Smart System Integration to discover new technologies that enable new application possibilities.
EUROPRÁCTICE
BUSINESS MODEL

The EUROPRÁCTICE business model is based on a coordinated brokerage service for industrial companies and academic institutions who look for affordable and easy access to technologies in the domain of electronic smart systems. The service builds on the many years’ experience of five consortium partners: imec, UKRI-STFC, Fraunhofer IIS, CMP and Tyndall.

EUROPRÁCTICE offers customers technology access through a vast network of suppliers that includes design-tool and IP-library vendors, foundries, assembly and test houses – who all provide state-of-the-art industry-grade technologies.

The overall concept is that EUROPRÁCTICE acts as the prime interface between the customers and the technology providers. Such a prime interface (or one-stop function) has advantages for both the supply and demand side of the value chain. It is schematically represented in Figure 1, where the supply side is depicted on top, the demand side at the bottom and EUROPRÁCTICE in the center.

Although EUROPRÁCTICE represents a large customer base, it is considered as one user by its suppliers. Design tool vendors, IP-vendors and foundries need to deal only with EUROPRÁCTICE to have their products and technologies promoted and securely distributed all over Europe. Thanks to this, EUROPRÁCTICE has been able to negotiate technology access on very favorable terms for its customers. This would not be possible when operating on a national level with only few users. Since the service functions on a pan-European level, the know-how and experience has only to be built up once.

Fig. 1: Schematic representation of the entire EUROPRÁCTICE ecosystem, depicting a central role of the EUROPRÁCTICE service as prime interface between the technology suppliers (on top) and the customers (at the bottom).
AFFORDABLE ACCESS TO STATE-OF-THE-ART CAD TOOLS

EUROPRACTICE has negotiated lower prices with the major design tool vendors worldwide, as well as with IP and programmable device vendors. Consequently, European academic institutions can access EUROPRACTICE licenses of the most advanced EDA/CAD tools for a wide range of electronic system (including IC, MEMS, Photonics etc.) design at affordable prices for education and non-commercial research. The design tools are made available in vendor specific functional bundles that are cost effective, easy to install and are enhanced annually under maintenance contracts to add new functionality. In addition, the EUROPRACTICE service provides an infrastructure to allow its Members to access EDA/CAD vendor material, such as training material, on a scale which otherwise would not be possible.

The current EUROPRACTICE network of European academic institutions is the largest network in the world having a unique and uniform tool base for electronic system, IC, MEMS and Photonics design. Access to these advanced CAD tools allows our customers to participate in EC-funded projects, ranging from IP block and component design to complete system design.

DESIGN TOOLS FOR SMEs
European SMEs can access certain design tools at low cost via EUROPRACTICE in order to produce a proof-of-concept IC to demonstrate their IP/product. The resultant IP can then be fully commercialized for an additional agreed fee. The SME gains access to an industry-standard full IC design flow, suitable for all IC technologies.

EUROPRACTICE works flexibly with academic institutes and SMEs to facilitate effective innovation. For instance, we have mechanisms in place if an academic institute has developed a design using EUROPRACTICE tools and subsequently wishes to exploit this design commercially, either via a spin-out or by transferring the IP to an existing SME.
EASY ACCESS TO PROTOTYPING FOR ASICS, MEMS AND PHOTONICS

In general, it is challenging for academic institutes and small companies to obtain access to foundry fabrication lines since they often need a high level of technical support and require only a small-volume production for prototyping purposes.

Over the last decades, leading IC-foundries have recognized that EUROPRACTICE is the ideal partner to offer low-cost prototyping services to smaller users and academia as EUROPRACTICE is the entity that offers technology access, fabrication services and technical support.

The current portfolio includes a wide range of technologies, such as ASIC processes ranging from 0.7μm to 12nm, MEMS, Si-Photonics and SiN-Photonics. The ASIC processes contain digital logic, RF, mixed-signal and high-voltage solutions.

Currently, seven of the nine ASIC foundries (namely, ams, EM Microelectronic, GLOBALFOUNDRIES, IHP, ON Semiconductor, STMicroelectronics and X-FAB) have manufacturing facilities in Europe and most of Si-photonics fabrication takes place in IHP, imec and CEA-Leti, where the last two are leading European RTOs. Over the past year, the Photonics offer has been complemented with the platforms of two more European foundries: LioniX International and CORNERSTONE.

The cost of producing a new IC for a dedicated application within a small market can be high, if directly produced by a commercial foundry. EUROPRACTICE has reduced the prototyping cost, especially for ASIC prototyping, by two techniques: Multi-Project-Wafer (MPW) runs and Multi-Level Masks.

MULTI PROJECT WAFER AND MINI@SIC RUNS

By combining several designs from different customers onto the same mask set of a prototype run, known as Multi-Project-Wafer (MPW) run, the high cost of the mask set and the fabrication process is shared among the participating customers.

Fabrication of prototypes can therefore be as low as 5% to 10% of the cost of a wafer run for only one dedicated customer. A limited number of IC prototypes, typically 20-50, are delivered to the customer for evaluation, either as naked dies or as encapsulated devices. Only prototypes from fully qualified wafers are taken to ensure that the chips delivered will function “right first time”. To achieve this, extensive Design Rule and Electrical Rule Checkings are performed on all designs submitted to the Service.

Since most of the designs fabricated for educational purposes are much smaller than the minimum block size on regular MPW runs, the concept of mini@sic was introduced in 2003. This solution allows to further lower prototype fabrication costs compared to standard MPW runs. The mini@sic principle is based on the following methodology: Several times per year, a foundry standard MPW block is bought and resold in smaller and cheaper sub-blocks or mini@sics. This program has been extended over the years and currently includes selected technologies from GLOBALFOUNDRIES, IHP, ON Semiconductor, TSMC, UMC and X-FAB.

At the end of 2020, EUROPRACTICE has introduced a new ultra-flexible pricing solution for mini@sics in the most popular TSMC technologies. The minimum areas for customers have been significantly reduced (for instance, down to 1mm² for TSMC 28nm and 65nm) and their X and Y dimensions have become free to choose.
TECHNOLOGY PORTFOLIO

In 2020, technologies of two new foundries have been added to the EUROPRACTICE portfolio: LioniX International and CORNERSTONE. For 2021, EUROPRACTICE will continue to extend and update its technology portfolio. Currently, customers can have access to prototype and production fabrication in the following technologies:

- ams 0.35µm CMOS C35B4C3
- ams 0.35µm CMOS C35OPTO + BARC Diode option
- ams 0.35µm HV CMOS H35B4D3
- ams 0.35µm SiGe-BiCMOS S35
- WLSCP for ams C35B4C3

- amun
- em Microelectronic 0.18µm EMALPC18 logic

- GLOBALFOUNDRIES
- ST

- TSMC

- UMC

- X-FAB

- imec

- MEMSCAP

- OPEN 3D post-process for 3D integration

- CORNERSTONE Si-Photonics 220 passives/actives
- CORNERSTONE Si-Photonics 340 passives
- CORNERSTONE Si-Photonics 500 passives

EUROPRACTICE | the access point for electronic components and systems
MULTI-LEVEL MASK SINGLE USER RUNS

Another technique to reduce the high mask costs is called Multi-Level Mask (MLM). With this technique the available mask area (for example 20mm × 20mm field for stepper equipment) is typically divided in four quadrants (4L/R : four layers per reticle) whereby each quadrant is filled with one design layer. As an example: one mask can contain four layers such as nwell, poly, ndiff and active. The total number of masks is therefore reduced by a factor of four. By adapting the lithographical procedure, it is possible to use one mask four times for the different layers by using the appropriate quadrants. This technique allows to significantly decrease the mask costs.

The advantages of using MLM single user runs are:
- lower mask costs
- an MLM run is organized for one customer
- it can be scheduled for any date since it does not depend on regular MPW runs
- a customer receives a few wafers, resulting in a few hundreds of prototypes

The MLM technique is preferred over MPW runs when the chip area becomes large and when the customer would like to get a higher number of prototypes. When the prototypes are successful, this mask set can be used under certain conditions for low volume production.

MLM runs are only available for technologies from GLOBALFOUNDRIES, IHP, ON Semiconductor and XFAB.

STANDARD PACKAGING

Standardly, EUROPEPRACTICE delivers unpackaged untested prototypes. However, EUROPEPRACTICE offers a low-cost, flexible and coordinated packaging service using industrial qualified packaging houses. A wide variety of ceramic and plastic packages are available, ranging from DILs (Dual-in-line) to PGAs (Pin Grid Array) and QFNs (Quad-Flat No-leads).

Side by side with world class partners and our long-term agreements, EUROPEPRACTICE boosts the deployment of your chip backend operations activities. This business environment is strengthened by a skilled team of in-house engineers who provide a reliable integrated service, from technical aspects up to logistics and supply chain management.

In addition, photonics packaging is offered by Tyndall. The photonics ecosystem continues to gather momentum attracting new users (from both academia and industry) and increasing the technical scope of the photonics offering via EUROPEPRACTICE. Finally, advanced packaging and system integration now complements EUROPEPRACTICE portfolio.
ADVANCED PACKAGING AND SMART SYSTEM INTEGRATION

There is a growing demand for advanced packaging and system integration in the semiconductor industry. This trend has been fueled by the need from a wide range of applications for better integration of more functionalities in a system-on-chip (SoC) and/or system-in-package (SiP). System integration is a scientific and engineering challenge of combining/putting together a variety of technology modules, such as microsystems, microelectronics, optics, photonics, MEMS, microfluidics and combinations of thereof. Examples of system integration in the semiconductor industry are vast, such as high-speed high-density datacom, artificial intelligence (AI), Internet of Things (IoT), bio-medical devices, sensors and many more.

Currently, the EUROPRACTICE portfolio is being extended with advanced packaging and system integration services enabling customers to realize complex multi-technology devices that can be upscaled from early-stage prototypes to volume manufacturing. This is achieved by adding specific processes or technologies in combination with the development of design rules and thereby facilitating advanced package design for system-on-chip integration.

EUROPRACTICE is showcasing the new system integration offer by means of virtual demonstrators, which are depicted on this page. They demonstrate how different building blocks or process modules make integration between multiple technologies possible. This covers advanced packaging of ASICs, photonics, MEMS, microfluidics and combinations of these technologies, from their design to their fabrication and integration.

System integration is made possible through EUROPRACTICE’s unique access to a variety of specialized process modules, including 2.5/3D integration of ASICs and PICs through die stacking techniques using pick-and-place, flip-chip, BGAs, Cu pillars as well as silicon interposers. Access to wafer level fan-out packaging is also provided, where dies from different sources or different technologies with varying thickness and size can be handled and packaged with one integration technology. Finally, add-on processes for noble metal finishes and microfluidic building blocks will be added to the technology portfolio, which are prerequisites for many bio-medical sensor devices. Most importantly, all solutions use industry standard processes making them scalable to high volume and more cost effective.
FROM PROTOTYPES TO VOLUME PRODUCTION

After successful ASIC prototyping, we can also provide customer access to the full production and qualification stage (from low to mid-high volumes).

PROTOTYPE FABRICATION

When all the checks have been performed, the ASIC can be fabricated on one of the MPWs or on a dedicated mask set. EUROPRACTICE takes care of the production for the first prototypes of the customer and organizes the assembly in ceramic or plastic packages if required. Using their own bench tests, the designer can check the functionality of the ASIC in an early stage.

DEVELOPMENT OF A TEST SOLUTION

When the device behaves according to the ASIC specifications, a test solution on an ATE (Automatic Test Equipment) platform is required to deliver electrical screened devices using a volume production test program. The test can be performed on both wafer level and on packaged devices. The goal is to reduce the test time and to examine the ASIC for manufacturing problems using the ATPG (Automatic Test Pattern Generation) and functional patterns. EUROPRACTICE supports you during the development of single-site test solution as well as with a multi-site test solution when high-volume testing is required. Based on the test strategy, different solutions can be implemented.

DEBUG AND CHARACTERIZATION

Before going into production, a characterization test program checks if all the ASIC specifications meet the customer’s expectations. Threshold values are defined for each tested parameter. The software tests all the IP blocks and the results are verified with the bench test results. A characterization at Low (LT), Room (RT) and High (HT) temperature is performed on a number of (corner) samples together with statistical analysis (Cp and Cpk) to understand the sensitivity of the design against corner process variations.

QUALIFICATION

When the silicon is proven to be strong against process variations, the product qualification can start. EUROPRACTICE can support you through the full qualification process using different kind of qualification flows, including Automotive, Consumer, Industrial, Medical, Space, Military, Jedeck and ESCC standards.

In this stage of the project, qualification boards must be developed for reliability tests and environmental tests.

YIELD IMPROVEMENT

EUROPRACTICE can perform yield analysis to determine critical points during the production and suggest the correct solution to maximize the yield. During the characterization and qualification of the device on corner lots, EUROPRACTICE can support the customer in defining the final parameter windows. Depending on the device sensitivity to process variations, the foundry will use the optimal process flow. During the ramp-up phase, data of hundreds of wafers are analyzed to check for yield issues related to assembly or wafer production. EUROPRACTICE is using the well proven tool Examiner™ from Galaxy Semiconductor that enables our engineers to perform fast data and yield analysis studies.

SUPPLY CHAIN MANAGEMENT

EUROPRACTICE is responsible for the full supply chain. This highly responsive service takes care of allocating in the shortest time the customer orders during engineering and production phases. Integrated logistics is applied across the partners to accurately achieve the final delivery dates. Customer products are treated internally as projects and followed closely by the EUROPRACTICE engineers. Our strong partner’s relations empower us to deal with many of the changing requests of our customers. EUROPRACTICE therefore acts as an extension of the operational unit of the customers by providing them a unique interface to the key required sub-contractors.

- Ceramic assembly partners: Alter Technology, Kyocera, SERMA Microelectronics, Teledyne e2v
- Plastic assembly partners: Amkor Technology, ASE, Greatek Electronics, Integra Technologies, Kyocera, StatsChipPac
- Wafer bumping partners: ASE, FlipChip International, Pactech
- Si-Photonics packaging: Alter Technology, PIXAPP, Tyndall
- Test partners: Alter Technology, Aptasic, ASE, Bluetest, Delta, EAG Laboratories, Salland Engineering, Microtest, RoodMicrotec
- Failure analysis: Maser Engineering, RoodMicrotec
- Library partners: Aragio, ARM, Cadence, eMemory, Faraday, INVECAS, Synopsys
- Rad test facility: LLN, RADEF
- Tape & Reel: Reel Service
- Long-term storage: HTV
EUROPRACTICE traditionally has organized high-quality training courses in design tools and technologies. With the beginning of the COVID-19 pandemic, these face-to-face events had to be suspended as of March 2020. To remain in close contact with existing customers and to introduce EUROPRACTICE services to new potential users, highly successful webinar series were organized.

TRAINING COURSES

EUROPRACTICE provides training courses targeting academic staff and PhD students from European universities and research institutes. Unlike training courses which address single topics or individual design tools, the EUROPRACTICE training courses typically address a design flow which makes these training courses an efficient way to acquire new knowledge and ideally suited to new PhD students and junior engineers with a need to quickly become productive with a design flow.

Since the courses are based on the EUROPRACTICE design tools, PDKs and Technologies, participants will be able to directly apply the techniques learnt on the training course when they return back to their own organization and make full use of the EUROPRACTICE infrastructure in their innovation, research and training.

Courses include a strong element of practical sessions where participants have an opportunity to extensively practice the concepts described in lectures and have access to experts who can answer questions about the concepts, design tools or technology processes discussed on the course.

Where a design flow is well supported by multiple vendors and/or processes, multiple course variants are offered that reflect the typical practice within European industry.

Since EUROPRACTICE Training courses began in April 2014, a total of 1285 delegates from 302 Member Institutes in 40 countries have attended 143 training courses making 4585 days of practical training.

Due to the COVID-19 pandemic, physical training courses were suspended from March 2020 onwards. Therefore, existing physical training courses were reconfigured and adapted so they could be presented online as live instructor-led training including (where appropriate) hands-on practical sessions using remotely accessible design tool environments. The consortium partners have also focused on development of webinars.
WEBINARS

Over the past year, EUROPRACTICE has become increasingly involved in developing and hosting webinars. These online sessions were free of charge and open to everyone. They were meant to raise awareness of the constantly growing EUROPRACTICE service portfolio and share valuable technology insights.

Webinars usually included informative presentations given by experts from world-leading companies, foundries or academic institutions, followed by a short Question & Answer session. To provide useful and interesting content for a broad audience, different webinars were adjusted for participants with different skills, ranging from general overview talks to advanced technical sessions.

Three EUROPRACTICE webinar series including more than 20 episodes took place in 2020:

Advanced Photonics Packaging
This series was created by Tyndall and included seven webinars that were meant to make participants better acquainted with the existing photonics packaging offer provided by EUROPRACTICE services. The first three webinars were broad with a general scope compared to the last four that examined specific technical topics in depth.

Introduction to Microfluidics
This six-webinar series was prepared by imec in cooperation with experts from leading European microfluidic companies. Since the EUROPRACTICE community is traditionally familiar with the design and implementation of devices and circuits in silicon, the main goal of these webinars was enlarging the technical scope of the community and introducing its members to the domain, new for many of them.

Silicon-Photonics
EUROPRACTICE partners invited speakers from six world-leading Si-Photonics foundries who shared their first-hand insights in six episodes. Each session was dedicated to the technologies of one particular foundry. In their talks, manufacturers shared how they fabricate PICs and what makes their technology unique.

In addition, STFC in partnership with Coventor gave a short highly technical two-webinar series on approaches to MEMS design. Further, STFC also organized a webinar that outlined the design flow for a digital ASIC to address inexperienced designers, for example new PhD students or others without current ASIC design knowledge.

All EUROPRACTICE webinars were highly popular. The live streamed webinars were attended by 1787 delegates. Including 1388 delegates from EUROPRACTICE member institutions, 94 from potential new EUROPRACTICE member institutions and 194 from European Industry.

For 2021, various new webinars are being planned, for instance a series on MEMS Technologies and Applications will be organized by Tyndall and will take place in March-April.
OUTREACH AND COMMUNICATION

2020 was a very challenging year for communication and outreach activities since majority of face-to-face events have been cancelled due to COVID-19 restrictions. To remain in touch with our customers and reach new users, EUROPRAXTICE has actively used virtual tools, such as websites, social media and online events.

WEBSITES
Information on a very broad and diverse EUROPRAXTICE offer is split between two websites that cover different aspects of the service portfolio.

www.europractice-ic.com: The Technology & Fabrication website is regularly updated with the latest news on MPW offer, run schedules and pricing. On this website, visitors can find all information related to fabrication process, including detailed technology descriptions, packaging offer, system integration solutions, volume production and test services. The website is maintained by imec.

www.europractice.stfc.ac.uk: The Design Tool & Training website is hosted and maintained by UKRI-STFC. It presents information related to EUROPRAXTICE membership and purchase of design tool licenses. The website also provides a detailed overview of the upcoming training courses and webinars, and a possibility to register for them.

SOCIAL MEDIA
To enlarge and strengthen EUROPRAXTICE user community, we started to actively develop accounts on LinkedIn and YouTube. By the end of 2020, we managed to create a strong presence in both social networks.

LinkedIn
Following EUROPRAXTICE on LinkedIn is an effective way for customers to receive most relevant news, such as upcoming webinars, new additions in the technology portfolio and approaching events where participants can meet EUROPRAXTICE representatives in person or online. In December 2020, our official LinkedIn account had close to 1300 followers.

YouTube
This channel gives an opportunity to watch all EUROPRAXTICE webinars from the series on Advanced Photonics Packaging, Introduction to Microfluidics and Silicon Photonics. It also contains videos introducing EUROPRAXTICE services and user stories. By the end of 2020, the channel had 7386 views and 283 subscribers.
EVENTS IN TIMES OF COVID-19

Every year, EUROPRACTICE is present at various scientific conferences, industrial trade shows and fairs in order to present its services to existing customers and to attract new prospects. Although physical events planned for 2020 have been cancelled from March onward due to the COVID-19 outbreak, multiple event organizers have turned to a virtual format.

During last year, EUROPRACTICE participated in several online events with virtual booths, posters and flyers that were developed specifically for these purposes. However, networking and direct interaction with customers remained difficult. As a result, no National Seminars took place in 2020 because active face-to-face networking is their core purpose.

To compensate for the lack of physical outreach and communication opportunities, EUROPRACTICE has been successfully using online communication by means of webinars and social media. In 2021, we are planning to remain in close contact with our customers and prospects. To achieve this, we will keep hosting virtual events, such as new webinar series and an upcoming industry-cluster event co-organized with DSP Valley. In addition, we will attend at least the following conferences and fairs:

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSCC 2021</td>
<td>Virtual</td>
<td>13-22 February</td>
</tr>
<tr>
<td>SSI 2021</td>
<td>Virtual</td>
<td>27-29 April</td>
</tr>
<tr>
<td>TRANSDUCERS 2021</td>
<td>Virtual</td>
<td>20-25 June</td>
</tr>
<tr>
<td>PRIME 2021</td>
<td>Virtual</td>
<td>19-22 July</td>
</tr>
<tr>
<td>ESSDERC / ESSCIRC2021</td>
<td></td>
<td>Grenoble, France 6-9 September</td>
</tr>
<tr>
<td>EFECs 2021</td>
<td></td>
<td>Amsterdam, the Netherlands 23-25 November</td>
</tr>
</tbody>
</table>
RESULTS 2020: MPW PROTOTYPING SERVICES

PROTOTYPED CIRCUITS ON MPW RUNS
In 2020, a total of 896 design projects have been submitted for prototyping on EUROPRACTICE MPW runs. This number is slightly higher than for the previous year, which is remarkable for such an unusually difficult year as 2020. It demonstrates that research and innovation could continue at the same pace and EUROPRACTICE together with its foundry partners continued to support its customers despite the COVID-19 restrictions.

60% of the prototypes were designed by European universities and research institutes, while 20% of the designs are coming from European industry (mainly SMEs). The remaining 20% of the designs are coming from outside Europe, namely 16% from research institutions and 4% from industry.

ACCESS TO TECHNOLOGIES OF WORLD-LEADING FOUNDRIES
EUROPRACTICE provides affordable access to technologies of world-leading foundries (ams, GLOBALFOUNDRIES, ON Semiconductor, STMicroelectronics, TSMC, UMC and X-FAB), complemented by specialty fabs at CEA-Leti, IHP, imec and MEMSCAP. This year, the first design projects were submitted in AMF and EM Microelectronic technologies. Similar to last year, most of the submitted designs in 2020 were fabricated in TSMC, which is also the leading foundry for the global industry.

Remarkably, two of the European foundries – STMicroelectronics and austriamicrosystems (ams) – have the second and fourth largest number of designs fabricated. One of the other European foundries, X FAB, has increased its number of fabricated designs once again as compared to last year(s).
GOOD TECHNOLOGY MIX
EUROPRACTICE offers a good technology mix to its customers. Advanced technologies, older technology nodes and More-than-Moore technologies are all used in significant volume by the EUROPRACTICE customers. The older technology nodes (ranging from 0.11μm to 0.8μm) are still very popular and represent approximately half of the total designs submitted. For the more advanced nodes, 65nm and associated nodes are the most popular with 181 fabricated designs. In addition, the 28nm technology node is used very frequently by the customers and its share has significantly grown compared to last year. 33 designs in total were realized in 22nm nodes. The 22nm FDSOI technology from GLOBALFOUNDRIES has once again shown tremendous growth in the number of designs, as it has more than doubled the figures: from 15 last year to 33 this year. The access to 16nm FinFET technology from TSMC can only be offered to a restricted set of customers, reflected by only 3 prototypes in 2020. The number of designs in Silicon Photonics technologies has mildly decreased due to a reduced number of designs in the imec Si-Photonics technologies in the first half of the year. It seems that those technologies were the only ones who saw an impact of the COVID-19 pandemic. The number of MEMS designs has slightly increased thanks to the X FAB XMB10 design competition. Finally, 2 designs have been fabricated in the GaN-IC technology, which was added only last year to the EUROPRACTICE technology portfolio.

GEOGRAPHICAL DISTRIBUTION
Although EUROPRACTICE focuses mainly on European customers, its services are also accessible for customers outside Europe. 64% of the fabricated designs are coming from the European Union and another 16% from other countries in the EMEA (Europe, Middle East and African) zone. A significant number of customers from Asia are also using the EUROPRACTICE prototyping services – representing a total volume of 97 designs in 2020. Finally, the remaining 9% of the designs fabricated are coming from the Americas and the Australian continent.
896 designs were submitted by customers from 43 countries worldwide. Traditionally, there have been a strong contribution from the European countries, in particular France, Germany and Switzerland. In addition, Belgium, Italy, the Netherlands and the United Kingdom have also contributed significantly to the total number of designs. While last year the highest number of submissions were made in France, this year Germany has taken over the lead with a total of 127 designs.

From overseas, China, India and the United States have a considerable number of designs submitted through the EUROPRACTICE service.
USER STORIES
ON PROTOTYPED DESIGNS
Warm front-end for X-ray cryogenic detectors
APC Laboratory, Paris, France

Contacts: Damien Prêle, Si Chen
E-mail: prele@apc.in2p3.fr
Technology: ams SiGe BiCMOS 0.35μm S35D4M5
Die size: 26.146 mm²

Introduction
AwaXe_v3 (Athena Warm Asic for the X-ifu Electronics - version 3) is an upgrade ASIC developed for the Warm Front End Electronics (WFEE) of a future X-ray observatory: ATHENA, a space mission of ESA. It is dedicated to an early demonstration model (Phase B) to validate the Time-Division Multiplexing (TDM) readout of the X-IFU (X-ray Integral Field Unit) instrument of the ATHENA telescope. It includes two TDM channels for low noise amplification and the bias of the TES/SQUID cryogenic detection chain. This ASIC belongs to the “AwaXe and SQmux ASIC families” developed at APC Laboratory for SQUID/TES readout. The development is funded by CNES and CNRS.

Description
AwaXe_v3 integrates two TDM readout channels of the X-IFU instrument. It is a mixed ASIC, mainly composed of:
- 2 identical fully-differential Low Noise Amplifiers (L/CH) to amplify scientific signals, with proper voltage gain =170 V/V, bandwidth (-3 dB) =24 MHz, ultra-low equivalent input noise < 1 nV/√Hz, low non-linearity <1% and low gain drift < 350 ppm/K in the range of [11°C, 75°C]. Input and output impedance matching is also practicable;
- 10 differential configurable current sources for the bias of SQUIDs and TES (5/CH), with maximum output 3.6mA or 600 μA. 4 of the 10 sources further respectively have an attached fixed current source (2/CH), allowing to have an alternative bias range of [-1.8 mA, 1.8 mA] or [-300 μA, 300 μA]. Current noise has been optimised down to low frequencies (1-100 Hz);
- A digital RadHard series bus RS485/I2C of 8-bit for the slow control of all 10 configurable current sources;
- Housekeeping elements to monitor temperature, current and voltage of the ASIC;
- 6 heating modules (3/CH) with nominal output 18 mA to heat/deflux cryogenic devices.

Fig.1: Layout of the circuit.
Sub 30 GHz VCOs in 22nm FDSOI for radar and communication applications

Institut für Mikroelektronik und Schaltungstechnik, Universität der Bundeswehr München, Germany

Contacts: MSc. Piyush Kumar, Dipl.-Ing. Dario Stajic, Prof. Linus Maurer
E-mail: piyush.kumar@unibw.de

Technology: GLOBALFOUNDRIES 22nm FD-SOI 22FDX

Die size:
- VCO in mm-Wave Spectrum: 345µm × 446µm
- push VCO: 448µm × 652µm

Design tools: Cadence IC advance, Mentor Calibre (for DRC, LVS, XACT checks), ADS-Momentum for the EM simulation of the coil

Introduction

Ocean 12 is an ECSEL co-funded project which is an Opportunity to Carry European Autonomous driving further with FDSOI technology. Based on the innovative FDSOI technology to develop new processors and applications design that leverage Fully Depleted Silicon On Insulator (FD-SOI) technology to offer the industry's lowest power integrated circuits, especially for automotive and aeronautic applications.

The Institute for Microelectronic and Integrated Circuit (EIT4) at Universität der Bundeswehr, München (UniBwM), is focused on realizing the building blocks for the frequency generation of mm-Wave FMCW radars.

Description

After the successful tapeouts in 2018 and 2019, this year Universität der Bundeswehr participated in the MPW tapeout from the EUROPRACTICE. We designed stand-alone VCOs and Frequency Multipliers.

The VCOs are based on the modified Colpitts-Oscillator and push-push topology. The silicon is verified by wafer-prober measurements and is fully functional.

The UniBwM designed a push-push VCO with the central frequency of 20 GHz. This architecture was chosen as the 2nd harmonic can be further multiplied to the target frequency band. The characterization of this block is in progress.

Why EUROPRACTICE?

EUROPRACTICE offers prototype services and testing for state-of-the-art technologies with mature PDKs at reasonable prices, including modern nanometer scale processes such as GF22FDX, which is used in this project. Without these services we as a University could not participate in such design-centric projects. They also provide excellent support for PDKs and tape-out procedures till the GDS submission.

Acknowledgment

This work was supported through OCEAN12 (Grant Nr 783127) project, receiving funding from H2020 ECSEL JU program and German Bundesministerium für Bildung und Forschung (BMBF).
A D-band Differential Transmission Line Based Power Combiner
Silicon Austria Labs, Linz, Austria

Contacts: Abouzar Hamidipour, Gernot Hueber
E-mail: abouzar.hamidipour@silicon-austria.com
Technology: GLOBALFOUNDRIES 22nm FD-SOI 22FDX
Die size: 1250μm × 1250μm
Design tools: EMX for EM simulations, Spectre for circuit simulations, Calibre for fill generation and merging GDSII files, PVS for DRC/LVS check

Description
With the growing attention to 6G and frequencies beyond 100 GHz, many attempts are being made to explore novel power combining structures. This is to overcome technology limitations in providing conventionally high output power. Traditional approaches of power combining such as Wilkinson or transformer-based have been widely used in lower frequency ranges as their theory is very well-known and their design procedure is straightforward. In frequencies beyond 100 GHz, however, transmission-line based power combiners could be preferred as their size shrinks appreciably and they prove comparatively low insertion loss. To this end, a D-band differential power combiner with 1:1 impedance ratio was designed based on transmission lines in GLOBALFOUNDRIES 22nm FD-SOI technology. Transmission lines provide 50 Ω impedance both at the input and the output of the combiner. Figure 1 shows a micrograph of the die and the test structure used to verify insertion loss of the combiner. Impedance matching was accomplished using quarter-wavelength transformers. To fulfill low-characteristic impedance requirements, the signal and ground traces of the strip lines were designed on QA and M1 layers, respectively. As can be seen in Figure 2, a very good agreement was achieved between the simulation and measurement over the whole D-band frequency range.

Why EUROPRACTICE?
EUROPRACTICE provides access to various state-of-the-art technologies at affordable price. Furthermore, EUROPRACTICE staff provide a very good customer service and technical support. The variety of technologies and the frequency of runs create a platform for excellent research opportunities.

Fig. 1: Microphotograph of the test structure used to verify the D-band differential power combiner.

Fig. 2: Measured and simulated S-parameters of the D-band differential power combiner.
140 GHz Transmitter Chip for Pseudo Random Noise Radar in 22 nm FD-SOI CMOS Technology

Institute of Electrical and Optical Communication Engineering (INT) and Institute of Robust Power Semiconductor Systems (ILH), University of Stuttgart, Germany

Contacts: Daniel Widmann, Raphael Nägele, Athanasios Gatzastras
E-mail: daniel.widmann@int.uni-stuttgart.de
Technology: GLOBALFOUNDRIES 22nm FD-SOI 22FDX
Die size: 1.25mm x 1.25mm
Design tools: For designing and simulation Cadence Virtuoso and Spectre were used. For DRC/LVS/PEX Mentor Calibre and xACT were used. ADS-Momentum from Keysight to extract and model inductors.

Description
Compact and inexpensive radar systems are an important prerequisite for advanced driver assistance systems (ADAS) and self-driving cars. Today’s radar systems rely on the hybrid integration of RF circuits in SiGe technology with digital circuits in CMOS technology. The progress of technology now allows moving to pure CMOS single-chip solutions that include the digital baseband, A/D and D/A signal converters as well as millimeter-wave circuits beyond 100 GHz on a single IC.
In this project a complete mixed signal transmitter integrated circuit in 22 nm FD-SOI CMOS was designed. The target application of the IC are broadband radar systems in which the carrier signal is modulated with a pseudo random noise signal. The baseband circuitry consists of a digital pulse shaping circuit for binary pseudo random input sequences with a subsequent D/A converter. After digital pre-processing, the symbols are converted to an analog signal by a non-binary D/A converter approaching a raised-cosine shape at very low hardware effort. The method implemented here is an efficient way to perform spectral shaping at low power consumption without complex analog filters.
The RF front-end includes up-conversion and millimeter-wave amplification. The spectral shaped differential IF signal is up-converted by a double-balanced mixer driven by a 140 GHz LO signal. The LO signal is generated out of a 35 GHz source by frequency quadruplication. The up converted differential RF signal passes through an amplifier chain to achieve a sufficient high output power.

Why EUROPRACTICE?
As research institutes specialized in the design of integrated mixed-signal and millimeter-wave circuits, fast access to leading electronic automation tools and state-of-the-art semiconductor technologies is of utmost importance for us. At present, and over the past two decades, we rely on EUROPRACTICE for software licensing, design kit access and particularly IC fabrication in some of the most advanced semiconductor technologies. We deeply value the benefits of being part of the EUROPRACTICE program and are very thankful for the technical support provided by EUROPRACTICE.
On-Chip Millimeter-Wave Integrated Absorptive Bandstop Filter in (Bi)-CMOS Technology

University of Technology Sydney, Australia

Contact: Dr. Forest Xi Zhu
E-mail: xi.zhu@uts.edu.au
Technology: IHP 0.13μm SiGe BiCMOS SG13G2
Die size: 0.32mm × 0.12mm

Introduction

Most filters provide rejection by reflecting signals back outside of the passband. This can sometimes cause a problem, especially when the filter is cascaded with relatively high-power devices, such as power amplifiers. A classical way to solve this problem of RF-power-reflection mitigation is to use reflectionless or absorptive RF filters. This type of filter dissipates the non-transmitted RF-signal energy inside its lossy-circuit structure instead of reflecting it back to its input terminal. So far, most of reflection-less/absorptive filters are designed in expensive III/V technologies, such as GaAs p-HEMT.

Description

The design of an on-chip millimetre-wave (mm-wave) absorptive bandstop filter in Bi-CMOS technology is reported here. It consists of a symmetrical two-path transversal structure that is inspired by the absorptive bandstop filter concept. In this design, the lossy properties of silicon-based distributed-element resonators are conveniently exploited to attain the two-port reflectionless behaviour without additional resistors for the stopband RF-power absorption. This is done while achieving a second-order deep-notch bandstop response. For the purpose of proof-of-concept, a 24.5-GHz bandstop filter is designed and fabricated. Close agreement between simulated and measured results for the designed filter is achieved.

The main measured performance metrics of the designed filter are as follows: second-order notched band with center frequency of 24.54 GHz, 10-dB-attenuation-referred absolute bandwidth of 1.54 GHz (i.e., 6% in relative terms), and maximum attenuation equal to 23.1 dB. The minimum input-power-matching level in the proximities of the stopband is 16.3 dB and below 15.4 dB for the frequency range from DC to 60 GHz. The maximum power-attenuation level in the passband region is 0.95 dB as measured at 60 GHz. Moreover, the power-absorption ratio at the notch frequency is 98.6%, as a demonstration of its absorptive nature.

Why EUROPRACTICE?

The University of Technology Sydney has worked with EUROPRACTICE on IHP fabrication for a few years. We have benefitted from EUROPRACTICE’s excellent technical support for dummy fill and GDS submission. The EUROPRACTICE’s MPW service allows affordable access to state-of-the-art technology, such as the 0.13μm SiGe BiCMOS technology used in this work. Without this service, this design would not have been possible.

Fig.1: Die microphotograph of the designed filter.

Fig.2: Measured and simulated S-parameters of the designed filter.
Silicon-Based IC-Waveguide Integration for High-Efficiency and Compact Millimeter-Wave Spatial Power Combiner

Integrated Circuits (IC) and Electromagnetics (EM) Group, Eindhoven University of Technology, The Netherlands

Contacts: Piyush Kaul, Alhassan Aljarosha
E-mail: p.kaul@tue.nl
Technology: IHP 0.13μm SiGe BiCMOS SG13S
Die size: 1.18mm x 0.86mm
Design Tools: Cadence: SPECTRE, IC and ASSURA

Description
Modern wireless systems operating at Millimeter-wave (mm-wave) frequencies require a low-loss packaging solution with a compact system-level integration. The research on such systems at mm-wave frequencies is focused on developing efficient power-generating systems based on III-V technology. However, in the past decade, silicon-based technology has rapidly gained significant interest as an alternative solution for the development of such systems. The high-level of integration of several transceiver blocks and size-scaling trend of the technology enable it to be more promising for high-volume commercial applications. In silicon-based wireless systems, the achievable output power is limited at mm-wave frequencies from a single amplifier. However, number of amplifiers that can be combined to achieve high output power is limited due to a trade-off between number of combiner ports and combiner insertion loss.

Packaging using RF interconnects such as flip-chip technology or bond-wires from MMICs to waveguides or high gain antennas introduces more insertion losses in addition to power-combiner loss, which is another challenge at Millimeter-wave frequencies. Moreover, the manufacturing and assembly process of waveguides at these frequencies is difficult in terms of accuracy and tolerances. Therefore, realization of a galvanic contact remains a challenge for transfer of signals between MMICs and waveguides at mm-wave frequencies.

The purpose of this IC-Waveguide system is to present a new packaging solution providing a contactless, and low-loss IC-to-waveguide connection (BEoL) of IHP Microelectronics SiGe BiCMOS process, SG13S. The RF-signals are directly coupled from the MMIC coupling-pads to a ridge waveguide via a cavity resonator, which enables a low-loss spatial power combiner in air.

Figure 1 presents the 3D model of the IC-Waveguide system. Figure 2 presents the passive back-to-back IC structure consisting of coupling pads and microstrip lines. The IC structure also uses the TSV module for enhanced RF performance.

Why EUROPRACTICE?
Eindhoven University of Technology has been a frequent user of EUROPRACTICE’s project runs. EUROPRACTICE services provide access to several advanced technology nodes. They also provide access to design support, process design kits, knowledge transfers, and design software (Cadence: SPECTRE, IC and ASSURA) in addition to design runs.

References
BrainWave: Ultra-Low-Power Processor

Eindhoven University of Technology, Eindhoven, The Netherlands

Contact: Kamlesh Singh
E-mail: k.k.singh@tue.nl
Technology: ST 28nm FD-SOI CMOS
Die size: 1.49 mm²

Introduction
The BrainWave processor aims for real-time epileptic seizure detection and classification. The chip is an ultra-low-power advanced digital signal processing SoC consisting of a RISC-V core and a coarse-grained reconfigurable accelerator (CGRA).

Description
The SoC implementation is a voltage converter free design based on three-level voltage stack operating using a single voltage source of 1.8V. The current consumption of SRAMs in the top stack is recycled to sustain the near/sub-threshold operation of logic circuits in the two lower stacks. The chip achieves up to 95% power delivery efficiency with a negligible area overhead. The energy efficiency achieved at near/sub-threshold operation (0.4V) is 35MMACs/mW with a peak performance of 4MMAC/s.

ROSQUILLAS: Ring Oscillators array to measure RTN

HiPICS research group, Electronic Engineering Dept., Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Barcelona, Spain

Contact: Enrique Barajas
E-mail: enrique.barajas@upc.edu
Technology: ST 28nm FD-SOI CMOS
Die size: 1.16 mm²

Introduction
This chip has been fabricated to analyze the effect of Random Telegraph Noise (RTN) in circuits fabricated with this technology and used in very low power supply environments.
Description

In this chip, several thousand ring oscillators have been placed in a matrix-like structure. They are accessible individually. In addition, any two of them can be switched on and connected to the input of an odometer to measure the RTN by measuring the change in the phase between the two oscillations filtering at the same time the jitter. Figure 2 shows the output of one of the oscillators of the array.

W-Band Active Mirror for OFDM Radar

University of Toronto, Canada

Contact: Sadegh Dadash

E-mail: dadashmo@ece.utoronto.ca

Technology: ST 55nm BiCMOS

Die size: 1.14 mm²

Introduction

The intended application is as an active mirror to improve the resolution of automotive radar networks using FMCW and OFDM modulation.

Description

The MMWTAGIQ tag is a transceiver with single-ended receiver input, a signal detector, an IQ-modulator, and a single-ended transmitter output driving the transmit antenna. The IQ modulation functionality is used to shift the carrier frequency by the modulation frequency. The gain and output power of the transmitter output can be adjusted with an off-chip control by about 30 dB. The tag operates from 2.5V supply in the 77-82GHz range. It achieves: Small-signal gain: >40dB; Noise figure: <7dB; Receiver S_{11} <-20dB; Transmitter S_{22} <-15dB; Transmitter P_{sat} = -10dBm; IQ modulation frequency: <200MHz; IQ modulation amplitude: 150mV; Detector range: -60dBm < P_{in} <-30dBm; Power dissipation: <77mW.
Multiband 5G New-Radio Digitally Controlled Power Amplifier, Voltage Controlled Oscillator, and Energy Harvester in Single CMOS Chip

Collaborative Microelectronic Design Excellence Centre Universiti Sains Malaysia

Contact: Jagadheswaran Rajendran
E-mail: jaga.rajendran@usm.my
Technology: ST 65nm CMOS RF
Die size: 1.2317 mm²

Introduction

As wireless communication system keeps on evolving, 5G application is highly demanded as it provides low latency, ultra-high-speed connectivity between devices, and higher data rates. The 5G deployments spectrum has been classified into low-frequency bands (Sub-6 GHz) and high-frequency bands (mm-wave). The sub-6 GHz application is also referred to as 5G New-Radio (5GNR) which is a unified, flexible air interface that supports the three main categories for 5G communications. The categories defined by the International Telecommunication Union (ITU) are enhanced mobile broadband, ultra-reliable low-latency communication, and massive internet of things. 5GNR can also support various 5G vertical applications including automotive and health care industries.

Description

A CMOS power amplifier (PA) comprises a pre-driver, a driver and a main stage that has been designed with integrated Digital Controller which is utilized to vary the operating point of the main PA stage. A voltage-controlled oscillator (VCO) has also been designed and integrated into the main PA. The VCO functions independently and also as a linearizer for the PA. In addition, an Energy Harvester (EH) has been integrated at the output of the PA. The EH converts the RF signal obtained at the output of the PA into a DC power which is utilized to supply other circuits and thus enhances the overall efficiency of the system. The S-Parameter response shows that the designed circuit has a wide operating bandwidth from 4.5-5.7 GHz. A peak gain of 22 dB is achieved at 4.5 GHz. The power amplifier delivers a maximum output power of 18 dBm. At 5 GHz, the VCO delivers an output power of 6.8 dBm and achieves a phase noise of 102 dBc/Hz at 1 MHz. The EH is capable of delivering a maximum DC output voltage of 2.5 V.
Electronic-Photonic Convergence for Silicon Photonics Transmitters Beyond 100Gbit/s On-Off Keying
University of Southampton, UK

Contacts: Dr Ke Li, Prof. David Thomson, Prof. Graham Reed
E-mail: kl@ecs.soton.ac.uk
Technology: TSMC 28nm HPC & CORNERSTONE Si-Photonics
220nm Active
Die size: TSMC 28nm: 610μm × 1000μm (Microblock)
Design tools: Cadence Virtuoso, Mentor Calibre

Description
The optical modulator is the critical component in systems serving modern information and communication technologies, not only in traditional data communication links but also in microwave photonics or chip-scale computing networks. In contrast to previous work in the field where electronic-photonic integration was mostly limited to the physical coupling approach between photonic and electronic devices, we have introduced a new design philosophy, where photonics and electronics must be considered as a single integrated system, in order to tackle the demanding technical challenges of this field.

By designing the silicon photonics modulator and CMOS driver amplifier as a single integrated system, we have demonstrated the world-wide first all-silicon optical transmitter at 100GBaud/s and beyond, without the use of digital signal processing to recover the signal. Compared to the recently reported lithium niobate modulators and electronic-plasmonic modulators integrated with Silicon Photonics, for example, in Nature (2018), Nature Photonics (2019), and Nature Electronics (2020), this work demonstrates great potential for a low power, low-cost, all-silicon solution, without the need to dramatically complicate fabrication processes by bringing in new materials that are not necessarily CMOS compatible. The technical details of this work can be found from the Optical Society of America (OSA) journal Optica. [1]

The silicon modulator was fabricated through Southampton’s CORNERSTONE research fabrication foundry service (available from EUROPRACTICE), and integrated with a TSMC28nm CMOS drivers that are designed in-house, and fabricated at the electronics foundry TSMC, Taiwan. The modulator fabrication and integration work were carried out at the University of Southampton’s Mountbatten cleanroom complex.

Why EUROPRACTICE?
The University of Southampton has worked with EUROPRACTICE for TSMC fabrication for many years. We have benefitted from EUROPRACTICE’s excellent technical support for CMOS chip submission. EUROPRACTICE has given us affordable access to frequent multi-project wafer fabrication runs.

Acknowledgement
This work was supported through the Engineering and Physical Sciences Research Council (EPSRC) EP/L00044X/1, EP/L021129/1, EP/N013247/1, EP/T019697/1, D. J. Thomson acknowledges funding from the Royal Society for his University Research Fellowship.

Reference
Error-detection and Correction Through Completion Detection Applied in a Dual Core DSP Processor Operated at Near-threshold Supply Voltage

KU Leuven – ESAT – MICAS, Belgium

Contacts: Roel Uytterhoeven, Wim Dehaene
E-mail: roel.uytterhoeven@esat.kuleuven.be
Technology: TSMC 28nm HPC+
Die size: 1.5mm × 1.5mm
Design tools: Cadence Xcelium, Innovus, Virtuoso, Spectre; Mentor Calibre

Description
Today, the wide application spectrum of battery-powered electronic devices demands energy-efficient microprocessors across a wide performance range. To that end, we focus on the implementation of these devices at ultra-low supply voltage in the sub/near-threshold domain. In this domain, the energy benefits associated with voltage-scaling reach their optimum in the minimum energy point or MEP. However, low voltage operation increases the system’s sensitivity to PVT variations and therefore enforces large and inefficient safety margins to ensure reliability as illustrated in Fig. 1. To counteract the energy losses caused by these margins, a novel timing-error detection and correction (EDaC) technique is applied. In contrast to most conventional EDaC systems, this technique avoids the need for additional hold-constraints to detect timing-errors. Furthermore, the proposed system corrects timing-errors through last-minute error-prevention. This allows the host processor to remain unaware (i.e. make abstraction) of the EDaC system and thus significantly eases the integration between both.

In this Silicon prototype shown in Fig. 2, our EDaC system is applied to the CoolFlux DSP audio processor from NXP. This is a dual-core processor optimized for low power consumption. To explore and benchmark the gains from the EDaC system, only one of the two identical cores is equipped with EDaC. The core without EDaC acts as a baseline that has to operate with the conventional signoff margins to guarantee reliability. On the other hand, the core with EDaC can safely operate at its most critical point without any margins.

Why EUROPRACTICE?
At MICAS, EUROPRACTICE is the default gateway to silicon prototypes. Their well-packed technology and CAD tools portfolio provides us with all the ingredients we need to design innovation and cutting-edge electronics. This whilst their well populated run schedule allows for flexible tape-out planning.

Acknowledgements
This design is made possible thanks to a collaboration with NXP semiconductors Haasrode and the support of an FWO-SB scholarship (IS31817N)

Reference

![Fig.1: Illustration of the energy overhead caused by voltage margins based on measurements from [1].](image)

![Fig.2: Die photograph of the Silicon prototype in 28nm HPC+ from TSMC.](image)
A novel particle tracking detection module featuring real-time, on-chip, prompt momentum discrimination for the CMS LHC experiment

CERN - The European Laboratory for Particle Physics, Geneva, Switzerland

Contacts: Kostas Kloukinas, Davide Ceresa, Alessandro Caratelli
E-mail: kostas.kloukinas@cern.ch
Technology: TSMC 65nm CMOS
Die sizes: 25mm × 11.9mm (MPA), 6.5mm × 11.8mm (SSA)
Design tools: Cadence Virtuoso, Genus, Innovus

Introduction
The Large Hadron Collider (LHC) experiments ATLAS, CMS, ALICE and LHCb at CERN are currently some of the most prominent detectors because of their size, complexity and rate capability. Huge magnet systems, which are used to bend the charged particles in order to measure their momenta, dominate the mechanical structures of these experiments. The fact that only about 100 of the 109 events per second can be written to disk necessitates highly complex online event selection, called ‘triggering’. CERN has planned upgrades of the LHC accelerator that are expected to allow operation at luminosities around or above 5×10^34 cm^-2s^-1 after 2025, to eventually reach an integrated luminosity of 3000 fb^-1. In order to fully exploit such operating conditions and the delivered luminosity, the CMS experiment needs to upgrade its tracking detectors and substantially improve its trigger capabilities. The capability of performing quick recognition of particles with high transverse momentum (more than 2 GeV/c) in the tracker is deemed essential to keep the CMS trigger rate at an acceptable level.

Description
This work presents a novel tracking module based on a combination of a pixelated sensor with a short strip sensor that would offer, for the first time, real-time, on-detector, prompt momentum discrimination. This module is part of the CMS Outer Tracker upgrade for the High Luminosity LHC (HL-LHC)^1. As shown in Figure 1, a module is composed by two closely spaced silicon sensors (a pixelated layer and a strip layer sensor) in a strong magnetic field providing sufficient sensitivity to measure the particles’ transverse momentum over the small sensor separation of a few millimeters. The correlation of the coordinates measured by the two sensors in the x-y plane enables the pT discrimination, while the segmentation of the pixelated sensor along the z direction (R direction in end-cap configuration), provides a precision coordinate that contributes to the required z0 resolution for the reconstructed track.

The Macro-Pixel ASIC (MPA) is a 65nm CMOS technology pixel readout chip featuring on-chip real-time particle discrimination with trigger-less and zero suppressed readout. The Short Strip ASIC (SSA) is a strip readout chip, designed in the same technology, which provides real-time particle hit coordinates from a strip sensor to the MPA for the particle discrimination.

Fig. 2. depicts the block diagram of the MPA Macro Pixel ASIC and SSA Short-Strip ASIC readout architecture. The trigger-less readout is based on transverse momentum (pT) particle discrimination and it works in parallel with a triggered and zero suppressed readout with a programmable latency (up to 12.8μs at 40MHz event rate), which provides the entire event with a maximum trigger rate of 1 MHz^2. The high complexity of the digital logic for particle selection and the very low power requirement of < 100 mW/cm^2 drive the choice of a 65 nm CMOS technology. The harsh environment, characterized by a high ionizing radiation dose of 100 Mrad and a low temperature of around -30° C, requires additional stud-
ies and technology characterization. Several architectures for particle tracking have been studied and evaluated with physics events from Monte Carlo simulations. The chosen architecture reaches an efficiency of >95% in particle selection and a data reduction from ~30 Gbps/cm² to ~0.7 Gbps/cm².

Results
Due to the large die sizes, the MPA and SSA ASICs have been prototyped on a full mask set dedicated engineering run on the TSMC 65nm MS/RF process. Testing of the MPA and SSA ASICs consisted of functional verification of the digital circuitry and performance characterization of the analog front-end circuitry using embedded charge injection capacitor circuits. ASICs with connected sensors were tested using radioactive sources and interest beam experiments. As extensively reported in [1], the MPA front-end characterization with internal capacitance pulse injection matched simulations closely, with a pixel-to-pixel threshold spread of 171 e− r.m.s. after equalization, an Equivalent Noise Charge (ENC) of 188 e− r.m.s., a peaking time of 24 ns and a time walk of < 15 ns. The power consumption is lower than 200 mW per chip and fulfills the very strict CMS Tracker requirements. The same tests, as reported in Ref. [4], were carried out on the SSA obtaining a strip-to-strip threshold spread of 55 e− r.m.s. after equalization, a noise without sensor connected of 330 e− r.m.s. and a peaking time of 19.3 ns. A special board was developed to test the MPA-SSA high-speed communication links. Measurements show a robust communication with a Bit Error Rate (BER) lower than 1×10⁻⁹ with the lower I/O bias current setting (BER limited by the test system, new measurement campaign on-going). During this test, a total consumption of 250 mW for the two ASICs has been measured. The ASICs’ irradiation with X-rays up to 200 Mrad did not show any performance degradation. In addition, a Single Event Upset (SEU) test with Heavy Ions proved SEU tolerance up to an effective Linear Energy Transfer (LET) of ~70 MeV/ (mg/cm²). Finally, a data error rate evaluation provided an SEU related data error probability lower than 5×10⁻¹¹.

Why EUROPRACTICE?
Within the framework of ASIC design for Particle Physics Instrumentation CERN and its collaborating institutes and universities tape out through the EUROPRACTICE service more than 50 ASICs per year. EUROPRACTICE services gives access to modern semiconductor processes of the worlds largest dedicated independent foundry, TSMC. Projects, such as the CMS Outer Tracker ASICs, with relatively small volume production requirements would not have otherwise the possibility to access and benefit from the use of such advanced process. Of equal importance is the technical support that the project receives from EUROPRACTICE engineers throughout the design the tape-out phases. The development of such complex ASICs requires the use of state-of-the-art EDA software tools for the design, the implementation and verification both at the component level as well as at the system level. EUROPRACTICE software service is an indispensable element for the ASIC developments at CERN and its collaborating institutes, supporting the use of a multitude of state-of-the-art EDA tools facilitating coherency in the collaborating design framework of distributed design teams. Custom microelectronics components implemented in advanced technologies are vital parts of today’s complex scientific instruments. The services provided by EUROPRACTICE are allowing a large community of physicists and engineers at CERN and in tens of collaborating Institutes working for these projects to use state of the art EDA software tools and access advanced CMOS process for the construction of unique scientific instruments with a centralized high-quality technical support.

References
Mixed-Signal Neuromorphic Device HICANN-X
Electronic Vision(s) Group, Kirchhoff Institute for Physics, Heidelberg University, Germany

Contact: Dr. Johannes Schemmel
E-mail: schemmel@kip.uni-heidelberg.de
Technology: TSMC 65nm
Die size: 8mm × 4mm
Design tools: Cadence Virtuoso, Mentor ModelSim/Questa, Cadence Xcelium, Synopsys Design Compiler, Cadence Innovus, Synopsys Primetime, Mentor Calibre

Description

Heidelberg University has a more than 20-year history of neuromorphic circuit design. The most recent generation is the BrainScaleS-2 system. This tapeout comprised the current revision of the BrainScaleS-2 system ASIC: a complex mixed-signal system-on-a-chip supporting all aspects of neuromorphic processing. It contains at its heart an analog neural network core, consisting of 256k synapse circuits and 512 neuronal compartments. They operate 1000 times faster than biological real-time, resulting in a maximum connection rate of 32×10^{15} cps. The analog core simultaneously supports spike or rate based neural modeling, making it suitable for deep convolutional neural networks as well as event-based processing after the biological example. The synapses include temporal correlation sensors for online learning, which is further supported by two on-die embedded Power-PC CPU cores with 128-wide SIMD-processing extensions each. They can access the analog correlation measurements as well as the membrane voltages of all neuronal compartments with two parallel ADC converters providing a total number of 1024 channels.

External communication is realized by eight source-synchronous serial links with an aggregated bandwidth of 32 Gb/s. The applications of the HICANN-X system are twofold: low-power analog inference and modeling of biologically-inspired online learning algorithms. For inference two operation modes are available. Either a rate-based one, which allows the direct implementation of DCNN models, or spike-based coding, which is especially suited for extreme low-latency inference. MNIST classification has been demonstrated with an effective rate of 70k frames per second at 4 μJ per frame while powering the full ASIC.

Why EUROPRACTICE?

Heidelberg University has worked with EUROPRACTICE on TSMC and other ICM fabrication on a multitude of successful tapeouts since 1994. EUROPRACTICE has been a reliable partner for all aspects of multi-project and full maskset prototypes. The affordable access to multi-project wafer and mini@sic fabrication has been an enabling factor for our research in neuromorphic hardware.

Acknowledgement

The research has received funding from the Bundesministeriums für Bildung und Forschung under the funding no. 16ES1127 (HD-BIO-AI) and from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement Nos. 720270, 785907 and 945539 (Human Brain Project, HBP).
LEO-I rapid integration research platform

Emerging Nanoscaled Integrated Circuits & Systems (EnICS) Labs, Faculty of Engineering, Bar-Ilan University, Israel

Contacts: Adam Teman, Shawn Ruby, Roman Golman
E-mail: adam.teman@biu.ac.il
Technology: TSMC 65nm CMOS LP
Die size: 4000μm × 2000μm

Background – The EnICS Labs Research Center

The Emerging Nanoscaled Integrated Circuits & Systems (EnICS) Labs in the Faculty of Engineering at Bar-Ilan University combines an academic research center with an industrial team of engineers ("SoC lab"), allowing to implement very complex projects, which are used for a demonstration of the ability of the research groups and the Israeli industry alike. This tapeout is a research-driven design, that was implemented using both the capabilities of the researchers and the industrial experience of the SoC lab.

Description

This chip nicknamed "LEO-I" is the first tapeout of an experimental platform design allowing to integrate several diverse research modules coming from different research groups into one chip with a standard interface. In this project researchers and research students have been working with the SoC Lab engineers, to develop the proposed platform.

The platform is aimed to allow very fast design cycles for bringing a project from the idea to the tapeout stage, where the researcher only needs to integrate his module via a dedicated advanced peripheral bus (APB) interface, while the rest of the chip is already implemented. The platform also includes two general purpose cores, built on the open-source and extendable RISC-V architecture. The cores are the first tapeout of our small footprint “HAMSA-DI” core – a dual-issue version of the RISy core, developed by the PULP team at ETH-Zurich. One of the integrated cores is a standard core made for reference comparison and backup, while the other is called the “experimental core”, as it allows integration of research modules directly into the microprocessor datapath and enabling microarchitecture level innovations. The chip architecture is illustrated in Fig. 1, showing both the hardened area that is the heart of the platform, which allows fast tapeout cycles, and the research modules integrated into the chip. The first tapeout of the chip, that includes more than ten different research modules integrated both as standalone modules and inside the research core, both from our research group, and from other groups. The layout of the chip is shown in Fig. 2.

Why EUROPRACTICE?

EUROPRACTICE allows us to prototype research designs in state-of-the-art technologies at affordable prices. The frequent scheduling of tapeout shuttles is extremely convenient allowing us to build an appropriate timeline for the project. Furthermore, the design submission process is very friendly, and accompanied by very good communication with EUROPRACTICE staff that is always open to questions and ready to help.

Acknowledgements

We acknowledge the support of Prof. Luca Benini’s group at ETH-Zurich for sharing their FLL IP with us, as well as providing the RISy core and PULPino SoC platform, from which our cores and platform were forked. We acknowledge the Israel Innovation Authority under the Kamin program and the Israel Ministry of Science and Technology for providing the funding for the tapeout, as well as a large portion of the research modules. Additional research modules are also supported by the Israel Science Foundation.
Rosetta: PULP-based in-memory computing research vehicle
ETH Zürich, EPFL, Switzerland

Contacts: Manuel Eggimann, Alexandre Levisse, Robert Giterman
E-mail: meggimann@iis.ee.ethz.ch
Technology: TSMC 65nm CMOS
Die size: 2940μm × 4080μm
Design tools: Synopsys: Design Compiler; Cadence Design Systems: Innovus; Mentor: Questasim, Calibre

Description
Rosetta is a research SoC designed around the PULPissimo architecture part of the open-source PULP platform (https://pulp-platform.org/). The basis is a RISC-V based microcontroller system running at 200MHz including 512kBytes of on-chip SRAM and a wide set of common peripherals such as QSPI, I2C, I2S, Camera Interface, UART and a JTAG-based RISC-V debug specification compliant debug unit with full access to the main memory bus of the system.

The most interesting aspect of the PULPissimo system is that it allows the addition of hardware accelerators that have direct access to the processor memory with relative ease. In Rosetta, the independent work of three different research groups was combined in one SoC. By sharing a common processing infrastructure and memory, the research groups were able to focus their work on their research and develop their own accelerators. The flexibility of the PULPissimo allowed these independent systems to be manufactured within the same SoC without interfering with each other while allowing greater flexibility for testing and evaluation. The contribution of the Integrated Circuits Laboratory of ETH Zurich is a programmable autonomous accelerator for Hyper-Dimensional Computing Algorithms with binary-spatter-code based hypervectors of dimensionality of up to 2048 bits. The Embedded Systems Laboratory of EPFL, Lausanne has contributed a 32KiB in-sram computing architecture and an innovative memory controller enabling in-situ bitwise operations, addition and multiplications. These features will be used to accelerate data-intensive applications running on the PULPissimo platform.

Finally, the Telecommunication Circuits Laboratory of EPFL developed a 64 KiB (in 16 memory cuts) of Gain-Cell eDRAM, based on conventional logic design rules, which can offer higher density than SRAM. The eDRAM in this implementation has a built-in refresh support and a new option to ease folding of the memory. By adjusting the refresh period, it will be used to explore approximate-computing concepts.

While these systems are designed to operate independently, the PULPissimo system also allows these systems to work concurrently, for example the hyper-dimensional computing accelerator is able to use both its own standard cell based memories operating at low voltages or the eDRAM operating with long refresh periods to explore energy reliability trade-offs in such configurations.

The chip is named after the Rosetta Stone that contains the same script in three alphabets and was instrumental in deciphering hieroglyphs. This chip contains the work of three different research groups and the high dimensional computing accelerator has applications in language recognition.

Why EUROPRACTICE?
Over the years, the Integrated Systems Laboratory of ETH Zurich has been able to design and get more than 200 ASICs manufactured through the active and invaluable support of both the EUROPRACTICE Design Tool Service which allows us to have access to state of the art IC Design software not only for research but also for in-class use and of course the EUROPRACTICE IC manufacturing service that has been instrumental in our ability to be engaged in IC Design at this level.
EUROPRACTICE is not only a service for us, but a partner that helps us with the correct choice of technology, packaging as well as supporting us in all aspects of the design process.

Acknowledgements
Part of the work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780215, Mnemosene.
CMOS reservoir computer for intelligent wearable health monitors
Electrical Engineering, University at Buffalo, State University of New York, NY, USA

Contacts: Arindam Sanyal, Sanjeev Tannirkulam Chandrasekaran
E-mail: arindams@buffalo.edu
Technology: TSMC 65nm 1p9M
Die size: 1.2mm × 0.7mm

Description
Early detection of stress and heart diseases can prevent one-third of global deaths. Advances in machine learning (ML) has the potential for automating risk prediction of heart diseases by analyzing patient vitals in combination with electronic healthcare record (EHR). Embedding ML algorithms on wearable devices can lead to continuous intelligent health monitoring of patients. However, conventional ML algorithms are computationally intensive and consume significant energy during a memory access, which makes their integration on resource-constrained wearables challenging. Prior attempts have addressed this issue through reduced bit-precision, in-memory computation, and reduced number of multipliers. However, they consume energy in the range of hundreds of nJ to tens of µJ for each inference.

Instead of optimizing existing ML architectures, we demonstrate the first reservoir-computing based RCML architecture that consumes factors-of-magnitude lower energy than conventional ML algorithms without sacrificing accuracy. The RC mimics a non-linear kernel and projects the input to a higher-dimensional space, thereby enabling classification of the data with simple logistic regression (LR) output layer. We demonstrate the RC chip for detecting stress and heart diseases from electrocardiogram (ECG) signal and electronic healthcare record (EHR). Operating from a 1.2V supply, the RC can detect stress from ECG signals in real-time with 93% accuracy, while consuming 27.5nJ/inference, which is 7x better than existing state-of-the-art ECG processors. The RC is capable of early prediction of heart diseases with 84% accuracy while consuming 7.5nJ/inference, which is 44x better than existing state-of-the-art neural networks ICs employed for medical event classification.

Why EUROPRRACTICE?
EUROPRACTICE offers affordable prototyping for research and it is much simpler to use their PDK and services compared to competitors in the USA. The EUROPRACTICE and imec staff are also easily accessible and have always answered all our questions patiently and helped us with all our prototypes.

Acknowledgement
This material is based on research sponsored by US Air Force Research Laboratory under agreement number FA8650-18-2-5402.
ALTIROC1, a 25 ps jitter ASIC for the ATLAS High Granularity Timing Detector (HGTD)

OMEGA (CNRS/IN2P3), Ecole Polytechnique, Palaiseau, France
SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California

Contacts: Nathalie Seguin-Moreau, Bojan Markovic
E-mails: nsmoreau@in2p3.fr, markovic@slac.stanford.edu
Technology: TSMC 0.13μm CMOS MS/RF (8-inch)
Die size: 7600μm × 7700μm

Description
ALTIROC1 is a 25-channel ASIC prototype designed in TSMC 130 nm to read out a 5 × 5 channel matrix of 1.3mm × 1.3mm Low Gain Avalanche Diodes (LGAD) of the new ATLAS HGTD detector foreseen for the High Luminosity-LHC upgrade, where high radiation levels are expected (200 Mrad and 2.5 10^15 MeV neq/cm² fluence). The dies will be bump-bonded onto sensors. The targeted combined time resolution of the system (sensor + readout electronics) is 25 ps for 10 fC input charges. The ASIC noise must be small enough to detect charges as small as 4 fC with a 95 % efficiency.

This ASIC comprises several analog and digital blocks. Each channel integrates a RF preamplifier (1 GHz bandwidth) followed by a large gain leading edge discriminator and two Time to Digital Converters (TDC) for Time-of-Arrival (TOA) and Time-Over-Threshold (TOT) measurements. The timing data are stored in a local memory. The TOA and TOT TDCs achieve a 20 ps time resolution over a 2.5 ns range and 40 ps over a 20 ns range respectively. Measurements gave a DNL of about 6 ps rms and time resolution dispersion between channels of 0.35 rms after individual tunings. This frontend exhibits a 20 ps jitter noise for a detector capacitance of 5 pF and an input charge of 5 fC while keeping a challenging power consumption of less than 4.5 mW per channel. Furthermore, the ASIC has out-of-pixel analog and digital blocks. In particular, it includes a 1.28 GHz PLL providing multiples of 40 MHz clocks and a phase shifter with 100 ps phase shift resolution over a 25 ns range.

Why EUROPRACTICE?
The EUROPRACTICE service offers the ability to reduce manufacturing costs thanks to large multi-project wafers.
GAMMA2: Bio-sensing SoC for wireless battery-less EEG-electrodes
Institute for Integrated Circuits, Johannes Kepler University Linz, Austria

Contacts: Prof. Harald Pretl, Stefan Schmickl
E-mail: harald.pretl@jku.at
Technology: TSMC 0.18μm CMOS Log/MS/RF (G)
Die size: 1.6mm × 1.6mm
Design tools: Cadence Virtuoso, Cadence Innovus, Mentor QuestaSim, Synopsys Design Vision, Synopsys PrimeTime

Description
Trends show that electroencephalography (EEG) systems, used for either patient therapies or brain-computer-interfaces (BCI), tend to use more and more electrodes due to increased spatial resolution. With growing electrode count, the cabling process becomes a very time-consuming task on the one hand, and on the other hand it becomes practically impossible for the user to move because of the bulky cabling. Here the presented bio-sensing SoC GAMMA2 comes into play as replacement of a cabled solution. Fig.1 shows a picture of GAMMA 2 prototype. The wireless BCI system was demonstrated at ARS Electronica 2020: Pangolin Scales.

The SoC consists of a power-management unit, which consists of an RF-energy-harvester working in the 868 MHz UHF-band for wireless powering of the SoC\cite{1,2}, and a low-power LDO providing a constant voltage of 1 V to the subsequent units, providing a power budget of 5 μW for the total SoC. For the acquisition of the bio-signals, which are in the order of 10 μV and 0.5 Hz to 100 Hz, a 350-nW ac-coupled low-noise amplifier with reduced flicker-noise\cite{4} and an untrimmed 14-bit non-binary SAR-ADC with 0.37 fF-capacitors using 1.1 μW at 4 kS/s\cite{3} are responsible. The digitized samples of the bio-signal get wirelessly transmitted with an ultra-wide-band (UWB) impulse-radio (IR) transmitter (TX)\cite{1,2}. The UWB-IR-TX works at 7 GHz, sending with a data rate of 5.12 kbps using a double-pulse-interval coded alphabet, consuming only 1.89 μW. The used transmission scheme allows up to 64 sensor nodes to work at the same time, enabling a high amount of wireless sensing channels. Indoor wireless transmission experiments showed a range of over 12 m, in companion with a custom made UWB-receiver.

Why EUROPRACTICE?
The EUROPRACTICE services allow affordable access and reasonable prices to leading-edge IC technologies, frequent MPW-fabrication runs, attractive mini@sic runs, CAD tools and packaging services. Our research projects would simply not be possible without the services EUROPRACTICE provides.

References
Circuit for fast and wide-band Bioimpedance Spectroscopy
National Center of Scientific Research - Laboratory of Computer Science, Robotics and Microelectronics of Montpellier (CNRS-LIRMM), France

Contact: Serge Bernard
E-mail: serge.bernard@lirmm.fr
Technology: TSMC 0.18μm CMOS MS/RF
Die size: 4160μm × 3695.01μm

Description
In the context of marine animal monitoring, teams from CNRS (LIRMM) and IFREMER are developing new technological and operational biologging solutions. The objective is to propose electronic systems, called electronic tags, which will be hooked onto the targeted marine species and will be capable of collecting information on individuals and their environment, then transmitting it via satellites. In addition to developing low-cost, low-disturbance solutions for the tracked animals, the originality is to supplement environmental and geolocation information with physiological information about the animal to link geolocation with the state and activity of the animal (feeding, reproduction, growth...).

This information is obviously crucial to understand the species and subsequently take effective management and protection actions. In particular, in the context of the FishNchip project (EMFF EU funding), the objective is to develop an implantable device to measure the composition of bluefin tuna flesh based on bioimpedance measurements, to observe the reproduction events and thus identify and characterize the tuna breeding areas.

To perform the impedance spectroscopy, we have designed a circuit in TSMC0.18μm technology by EUROPRACTICE. At the end of the project, the integrated circuit will perform an impedance spectroscopy on 22 frequencies in less than 200ms over a frequency range from 4Hz to 8MHz. The measurement can be configured in 2-points or 4-points. After manufacturing, the circuit has been compared with measuring instruments. A new version of the circuit is planned in 2021 to correct some bugs and improve the performances.

Why EUROPRACTICE?
We use EUROPRACTICE for the technology they offer and the associated services.
Test chip module: A 400 mV Continuous-Time Delta Sigma Modulator for Multichannel Biomedical Applications

Mixed-signal group, Department of Electrical Engineering, Indian Institute of Technology Bombay, India

Designers: Laxmeesha S, Maryam Shojaei Baghini
Supervisor: Prof. Maryam Shojaei Baghini
E-mail: mshojaei@ee.iitb.ac.in
Technology: UMC 65nm Logic/MM/RF-LL (mini@sic)
Die size: 1875μm × 1875μm

Description
Demands for monitoring and recording of various bio-potential signals have been increased for the implementation of numerous multichannel, portable and implantable electronic medical systems. Implantable recording systems with parallel recording channels present challenges in the form of high-density and very low power consumption. The systems generally exhibit very low power consumption characteristics since they must operate for months or years without battery replacement and help reduce the risk of damaging surrounding tissues due to the dissipated heat. Reducing the operating voltage is one of the most effective ways to reduce the dynamic power consumption. Monitoring and recording biomedical signals of the human body require the conversion of multi-channel analog bio-potential signals into digital signals through ADCs. Compact, very low power (operating at a low voltage) and energy efficient ADCs are hence very essential for the longevity of portable and implantable medical systems.

The continuous time delta sigma modulator (CTDSM) based ADC designed in this work operates at a low supply voltage of 400 mV for low power operation. For further power saving, a low oversampling ratio (OSR) CTDSM is realized by means of duty cycled integrators. The duty cycled integrators are realized using passive components leading to additional power saving. A novel differential amplifier with an inherent bulk based common mode feedback is utilized to isolate the passive integrator stages and provide the loop-filter gain of the CTDSM. An auto-shutdown comparator was designed to operate at a 400 mV supply voltage while still maintaining sub-μW power consumption. The auto-shutdown feature is essential since the reduced MOSFET stacking in the comparator leads to large power dissipation.

Measurement Results
The ASIC is realized in a 65 nm low-leakage CMOS process as shown in Fig.1. For a biomedical bandwidth of 10 kHz, at an OSR of 32 (clock frequency of 640 kHz), the CTDSM achieved a measured SNDR of 56.3 dB while consuming 160 nW power, operating at 400 mV. Further, at an OSR of 128 (clock frequency of 2.56 MHz), the CTDSM achieved an SNDR of 64.7 dB with a power consumption of 560 nW at 400 mV supply voltage. The CTDSM occupies an extremely small area of only 0.035 mm² and exhibits an energy efficiency of 15 fJ/conversion at an OSR of 32, making it an ideal candidate for multichannel bio-potential acquisition systems.

Why EUROPRACTICE?
EUROPRACTICE provides students and research scholars access to the various semiconductor ASIC fabrication technologies to test and prototype their designs at affordable academic prices. EUROPRACTICE gave us excellent technical support during the entire design cycle from the GDSII preparation to the submission stage and finally to the packaging stage. The entire procedure is well planned by the EUROPRACTICE team.

Acknowledgments
• Department of Science and Technology (DST), SMDP-C2SD program of MeitY, Govt. of India.
• VLSI lab and Embedded Systems lab of the Department of Electrical Engineering, IIT Bombay
Programmable Readout IC for Photodiodes Array
Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Warsaw, Poland

Contacts: Cezary Kolacinski*, Pawel Pienczuk, Andrzej Szymanski and Dariusz Obrebski
E-mail: ckolacin@ite.waw.pl
Technology: UMC L180 MM/RF
Die size: 4960μm × 1525μm
Design tool: Cadence Design Systems

Description
Under the ParCour project, the established consortium develops a new particle counting technique, with an aim of cost and mobility. A new measurement apparatus will be based on a LED light source, additional optical systems, a unique photodiodes (PDs) array and a designed integrated circuit for readout. The PDs array is organized as a half ring structure consisting of 17 sections with different sizes and position - this structure has been manufactured using proprietary CMOS process of the Institute of Microelectronics and Photonics.

Dedicated readout chip – designed in UMC L180 MM/RF process - features 17 analog input ports, 17 analog output ports, SPI bus and several diagnostic and auxiliary ports. Designed analog block consists of 17 separate channels, one for each photodiode forming the detection array. Signal path of each channel is composed of two amplification blocks: a transimpedance amplifier (TIA) and a voltage amplifier (buffer). Parameters of the particular channel has been suited to the expected characteristic of corresponding PD but the values of offset and current-to-voltage ratio (transconductance) can be controlled (within the limited range) by the 4-bit digital signals, independently for each channel.

Digital interface configures the analog block parameters – it consists of several calibration registers, accessible via the Serial Peripheral Interface (SPI). Power-on Reset (PoR) block resets registers at every power-up event.

Every time the power supply is switched on, the configuration process must be performed. It is realized with the mentioned SPI protocol and 2-byte data frame. Each configuration word addresses particular register in specific channel and passes 4-bit value in 11 least-significant bits. Last 5 bits are ignored. The channel to be controlled is addressed by 5 LSBs within the frame, while the register – by subsequent two bits. Total current consumption has been estimated at 10mA for the complete chip (at 3.3V power supply). The structure fabricated in UMC CMOS 180nm technology occupies area of 4960μm x 1525μm and is equipped with 57 I/O pads.

Why EUROPRACTICE?
Łukasiewicz Research Network - Institute of Microelectronics and Photonics (formerly Institute of Electron Technology) is a longstanding member of EUROPRACTICE, with many ICs designed and fabricated over the last twenty years. The EUROPRACTICE MPW service offers an excellent opportunity for the prospective access to many mature technologies. EUROPRACTICE staff always provides superb assistance and knowledgeable feedback, which is a huge support for our design and prototyping processes.

Acknowledgement
This work has been supported by Poland Berlin-Brandenburg Project no. 2/POLBER-3/2018 Parcour – “Particle counter.”
ReSCU-V2: SIL3 Safe-SoC according to IEC 61508
Institute for Computer Architecture and System Programming (ICAS), University of Kassel, Germany

Contacts: Prof. Dr.-Ing. Josef Börcsök, M. Sc. Waldemar Müller, M. Sc. Eike Hahn
E-mail: j.boercsoek@uni-kassel.de
Technology: UMC L180 MM/RF 1.8V/3.3V 1P6M
Die size: 5mm × 5mm
Design tools: Cadence digital design flow

Introduction
Today, in addition to system size, reduced system costs, optimized energy consumption and high reliability or safety, the aspects of functional safety are increasingly in the focus of many applications.

Description
The ReSCU-V2 safety chip consists of a 1oo2D safety architecture model (Fig.1) based on an asynchronous software comparator architecture. The design of the safety SoC is realized according to IEC 61508 standard. Internally, the architecture has two redundant 32-bit microcontrollers of type ColdFireV2. Each side consists of 16KiB Cache and 32KiB SRAM, both enhanced with SECDED, as well as ethernet, QSPI, I2C, UART and CAN as peripherals. The complete SoC also features 78 FlexIO and 20 PWM, multiplexed with peripheral functions, as well as 8 ADC and 4 DAC channels. All FlexIO are equipped with real-time hardware on-chip diagnosis for every single IO, including self-test, that detects multiplexer status and correct function of the IO up to the bond pad without software intervention. ADC and DAC are also redundant, as well as isolated and provide diagnosis features. On top, there is a physically isolated watchdog on chip.

Both microprocessor systems are independent from clock, power and memory, called by standard free from interference. For crosschecking the safety-relevant results of both processors, they can communicate on-chip by two fast asynchronous interfaces.

Freedom from interference is also concerned for the back-end design, so both microprocessor systems are physically isolated by a 100μm wide gap. Additionally, all supply voltages need to be independent, which leads to eight power domains on chip for I/O, core, PLL and analog parts on both channels.

The SoC was packaged into a CPGA256 package. It consumes <500mW and runs stable at 100MHz from -40°C to +125°C.

Why EUROPRACTICE?
EUROPRACTICE gives the possibility to realize small research projects with limited funding. Additionally, the support by EUROPRACTICE for software and design issues is of big importance for small research groups.

References
http://www.uni-kassel.de/eecs/fachgebiete/icas/forschung/system-on-a-chip-soceuropRACTICE2.html
NIRCA MkII - Control ASIC for IR image sensors
Integrated Detector Electronics AS (IDEAS), Oslo, Norway

Contacts: Amir Hasanbegovic, Gunnar Maehlum
E-mail: amir.hasanbegovic@ideas.no
Technology: UMC L180 Logic GII, Mixed-Mode/RF
Die size: 10mm x 10mm

Description
NIRCA MkII is the second-generation ASIC from IDEAS for readout from infrared (IR) image sensors, e.g., HgCdTe/MCT-based focal plane arrays (FPA). The ASIC aims at reducing the size, weight, power and cost (SWaP-C) of infrared sensor readout systems by integrating the necessary functions and performance on a single ASIC. The NIRCA MkII is a radiation-tolerant integrated circuit (IC) system-on-chip with operating temperature between -40°C and +85°C. This makes the ASIC highly suitable for meeting the requirements in Earth observation payloads on satellites. The illustration shows the die photo of the ASIC (with annotations). The ASIC includes 16 video channels (VADCs) and 1 auxiliary ADC (AADC), each with a 1x to 8x programmable gain amplifier and a pipeline ADC with 14-bit and 16-bit output options running at 12 Msp/s. Analog input offset is adjustable in the analog domain (SREF) with fine-tuning of gain and offset is possible in the digital domain. Digitized sensor data is output on a 9x480-Mbps high-speed serial LVDS interface. The ASIC provides a digital interface (DIN/DOUT) for controlling the sensor, and analog reference voltages (ODAC) for biasing the sensor. NIRCA MkII is programmed via an SPI interface. After a program has been loaded into the internal ECC RAM the internal sequencer can execute a variety of tasks, e.g., waveform generation, ADC sampling control, configuration and control of both internal analog and digital modules. The validation campaign is currently ongoing, and the results so far have been satisfactory.

Why EUROPRACTICE?
To make this design, we worked closely with imec, who provided IP and chip verification services. The design was submitted for fabrication by using EUROPRACTICE MPW services.

Acknowledgements
The NIRCA MkII ASIC is developed under the ESA project Control ASIC for Earth Observation Infrared Detector (ESA Contract No. 4000119554/17/NL/BJ). The project has been funded by the European Space Agency (ESA), the Norwegian Space Agency (NSA) and IDEAS.
Read-out ASIC for GEM detectors
ASIC Lab, National Research Nuclear University «MEPhI», Moscow, Russia

Contacts: Eduard V. Atkin, Vitaly Shumikhin
E-mail: vvshumikhin@mephi.ru
Technology: UMC L180 Mixed-Mode/RF
Die size: 3240μm × 1525μm

Description
Nowadays gas electron multiplier (GEM) detectors are widely used in large-scale physical experiments, such as MPD (NICA), CBM (FAIR). During last few years a multichannel readout ASIC for GEM detectors with an asynchronous (self-triggered) architecture has been developed.

The developed ASIC is intended for read-out signals coming from GEM detectors. The prototype version of the ASIC contains 8 analog front-end channels for processing signals of both polarities up to 100 fC at maximum detector capacitance of 100 pF, followed by a 10-bit ADC in each channel and a digital signal processing system. After amplification and filtering of the detector signal in the analog channel, the ADC converts it at a maximum sampling rate of 25 MHz.

The chip has two modes of operation. In test mode, digital data from the ADC is serialized and directly buffered by mean of differential SLVS transmitters, working at a maximum frequency of 320 MHz. In operating mode, the data from the ADC of each channel is additionally processed by the interpolator. A slow serial interface is used to control the operation modes of the ASIC. To generate the clock signals in the chip the phase-locked loop unit (PLL) is used.

A specific feature of the chip is a usage of the digital domain interpolator for amplitude measurements. Using of the interpolator allows determining signal maximum in ASIC at high accuracy: 1 LSB for 10 bits ADC (simulation results).

Results
The ASIC has been implemented in 0.18 μm UMC L180 Mixed-Mode/RF CMOS process and packaged into CPGA 120 case. The layout and die photo are shown in Fig. 1. The lab measurement setup, shown in Fig. 2, has confirmed the expected ASIC functionality.

Why EUROPRACTICE?
EUROPRACTICE provides a unique opportunity for our University to have a well-scheduled access to a wide range of advanced technological processes. It is also important, that the approach is cost-effective. This allows making a simple choice of right technology for each R&D project, keeping in mind possibility of further engineering runs for a small volume reproduction of chips. An expert support on installation and usage of PDKs jointly with advanced EDA tools gives additional benefit to our designers.

Acknowledgement
This work was supported by Grant No. 18-79-10259 of the Russian Science Foundation.
Servo Drive Controller ASIC
Faculty of Engineering, Technical University of Applied Sciences Rosenheim, Germany

Contact: Dr. Martin Versen
E-mail: martin.versen@th-rosenheim.de
Technology: X-FAB XH018 0.18μm E-FLASH MET3/4/MID/THK
Die size: 3226μm × 2962μm
Design tools: Cadence: Virtuoso, Genus, Innovus

Description
Position-controlled servo drives are widely used in automation systems. A cascaded control structure with a current controller as innermost control loop is used. As controller usually consists of proportional, integral and differential (PID) elements, the motor control ASIC is a configurable PID controller. The configuration is achieved by a serial peripheral interface (SPI). The motor controller acts a SPI slave. Digital inputs connect to three delta-sigma modulators which sample at an input frequency of 16MHz. One analog input receives a current input signal, while the other two interface to the A/B signal of a rotary or a linear encoder. Three sinc3 decimation filters are implemented with variable filter lengths between 16 and 256 to reduce the noise of the serial 1-bit input data streams. For the motor control, the output signal switches a full bridge assembly with an adjustable resolution of up to 16bit with a device frequency of 100MHz. The project includes a digital output interface for two 16bit digital-analog converters (DAC) so that we can visualize control loop variables with an oscilloscope on-line.

The servo drive controller is going to be used in lab practices for mixed-signal systems in the master program of the university.

Why EUROPRACTICE?
The Technical University of Applied Sciences Rosenheim has licensed Cadence Tools through EUROPRACTICE for several years. We have benefitted from EUROPRACTICE’s excellent technical support for dummy fill, chip submission and chip packaging. EUROPRACTICE has given us an affordable access to a multi-project wafer fabrication run.
Calibration pulser for high energy physics ATLAS detector at CERN
Centre de Microélectronique OMEGA – CNRS/IN2P3-Ecole Polytechnique, Palaiseau, France

Contact: Gisele Martin-Chassard
E-mail: gisele.martin-chassard@in2p3.fr
Technology: XFAB XT018 0.18μm
Die size: 4.2mm × 2mm
Design tool: Mentor Calibre

Introduction
The ASIC calib_atlas will provide the calibration of the electromagnetic calorimeter for ATLAS experiment at CERN. The goal of the circuit is to generate variable high precision test pulses in each measurement channel of the detector over the whole energy range (16bits).

Description
The chip embeds a 16bit-DAC current followed by four high-frequency switches to provide four calibration channels as shown in the figure of the chip layout.

The 16bits DAC provides a current from 5μA (LSB) to 320mA with an integral non-linearity less than 0.1% in the 10-bits DAC range. Thanks to XFAB 10V transistors, we could make the high-frequency switches so that the output pulse could reach 7.5V on 25 Ohms load. The 6 metal levels are very efficient to drive properly a relatively high current.

Results
The dies are packed in QFN64 case. The tests show good results in term of dynamic range and linearity for the switch part, but more mitigated results for the 13-bit and 16-bit DAC parts. The chip, which will be used in high energy physics experiment, must be characterized in irradiation environment. Irradiation tests were performed in X-ray beam up to 3Mrad at CERN and in proton beam until 4 Mrad using Proton Irradation Facility (PIF) of Paul Scherrer Institut (PSI). These tests show too big leakage current increase and Vt shift for standard 5V MOS to be able to keep the chip performances in CERN experiments. However, the results are acceptable for 10V MOS transistors. Seeing these results, we decided to redo a 13bit-DAC in another more rad-hard technology and keep in XT018 the high frequency switches and the 3 MSB DAC (as PMOS current mirrors). The new chip was submitted in August 2020 run.

Why EUROPRACTICE?
EUROPRACTICE MPW program offers designers and researchers the opportunity to prototype their designs at an affordable price. EUROPRACTICE staff provide excellent technical support through the different stages of the tape-out.

Fig.1: Layout of the designed chip.
Silicon-Photonics Array for Ultrasound Detection
Technion - Israel Institute of Technology, Haifa, Israel

Contacts: Y. Hazan, A. Rosenthal
E-mail: yoav.hazan@campus.technion.ac.il
Technology: Tyndall packaging & imec Si-Photonics Passives+
Die size: 5mm × 5mm (Full wafer to allow for post-processing)
Design tools: Synopsys OptoDesigner

Description
In biomedical application, the detection of ultrasound is commonly performed using piezo-electric transducers due to their ability to transmit and receive. Nevertheless, in new emerging hybrid imaging modalities, where only detection of ultrasound is required, piezo-electric technology does not provide the required bandwidth without compromising sensitivity. Ultrasound detection via optical resonators can perform with the required broad-bandwidth and sensitivity. In this work, optical micro-resonators designed with OptoDesigner software and fabricated in Silicon-on-insulator technology at imec, scaling down to a few tens of microns with broad-bandwidth over 100MHz. In post-processing, polymer over-coating increases the sensitivity to few tens of Pascals, achieving sensitivity that enables biomedical imaging. Finally, the Silicon resonators were fiber-coupled at Tyndall to allow interrogation and readout.

Why EUROPRACTICE?
EUROPRACTICE provides accessible, layout and simulation software, state-of-the-art fabrication and packaging technologies to small research institutes for rapid prototype manufacturing, which otherwise would be inaccessible or would take excessive time and money. The process design kit (PDK) provided by imec and used in Synopsys OptoDesigner layout software provided by STFC, made the design and layout process easy, using the well developed photonic integrated circuits (PIC) elements, then assembled and packaged by Tyndall National Institute. The professional technical support and humanly attention of STFC, imec and Tyndall was exquisite and greatly appreciated.
Design of High-speed Multi-lane Silicon Photonics MZM array

Department of Micro/Nano Electronics, Shanghai Jiao Tong University, China

Contact: Prof. Sun Yanan
E-mail: sunyanan@sjtu.edu.cn
Technology: imec Si-Photonics IsiPP50G
Die size: 5150μm × 5150μm

Introduction
Silicon photonics is becoming the technology of choice for optical transceivers in short reach optical interconnect systems. It leverages the existing microelectronic fabrication infrastructures, promising lower fabrication cost and larger scale integration than III-V photonics. To meet the performance requirement in bandwidth density and cost in next-generation high-performance computers and data centers, it is critical to achieve high-density integration of optical transceivers. However, using the principle of parallelism and scale-out the channel count, the large footprint and spacing of driving electrodes limit the bandwidth density. To overcome this limitation, a more compact device footprint and greater flexibility design is quite necessary.

Description
This work implemented a high-density and high-speed multi-lane traveling wave MZM array based on imec silicon photonics technology. We proposed a novel compact traveling-wave electrode structure for the MZM, and shared the ground pad between two neighboring MZMs to reduce the device size. Two MZM arrays with different lengths are designed in this chip. The optical eye-diagram measurement results show that MZM array can work at 25Gbps simultaneously with low crosstalk.

Why EUROPRACTICE?
The EUROPRACTICE provides accessible access to foundry services to research institutions that could otherwise not easily support regular fabrication costs. We have been working with EUROPRACTICE many years. In this work, we used imec silicon photonics technology IsiPP50G offered by the MPW service of EUROPRACTICE. We really appreciated EUROPRACTICE and imec technical support at every step of the chip design process, which significantly speeded up the development of the chip.
Compact arrayed waveguide grating spectrometer for spectral-domain optical coherence tomography at 860 nm center wavelength on silicon nitride platform

Center for Advanced Research in Photonics, Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong

Contact: Hon Ki Tsang
E-mail: hkttsang@ee.cuhk.edu.hk
Technology: imec SiN-Photonics BioPIX300
Die size: 10.75mm × 4.75mm

Description
The spectral domain optical coherence tomography (SD-OCT) is a three-dimensional (3D) imaging technique which obtain the information of the sample in depth direction by measuring the interference signal in spectral domain. A broadband and high-resolution spectrometer is the key component in SD-OCT system, which guarantees the large imaging depth and high imaging resolution in depth direction. Silicon nitride platform, with wide transparent spectral range, enables the operation of the spectrometer at the 860 nm center wavelength, which is often the spectral region of choice for in-vivo bio-imaging.

We designed a 40-channel arrayed waveguide grating (AWG) spectrometer with 60 nm operating bandwidth and 1.5 nm spectral resolution. Enabled by the high professional MPW service from imec under the PIX4life silicon nitride MPW, and especially with the high-quality devices fabricated, the AWG spectrometer we designed showed 1.3 dB experimental insertion loss and about -20 dB inter-channel crosstalk with experimental spectral resolution and optical bandwidth exactly matching with the design value. The total footprint of the AWG spectrometer is 910μm × 680μm. This AWG spectrometer with relatively good performance on silicon nitride also enabled our publication “Ultracompact 40-Channel Arrayed Waveguide Grating on Silicon Nitride Platform at 860 nm,” IEEE Journal of Quantum Electronics 56, 8400308 (2020).

Another paper has been submitted discussing the limitations on crosstalk performance in large-scale arrayed waveguides from the phase variations caused by nitride thickness nonuniformity and how alternative approaches can alleviate this problem for high resolution and wide optical bandwidth spectrometers. The MPW service has also helped us to gain further research grant funding from Hong Kong government for developing integrated spectrometers for advanced dynamic optical coherence tomography.

PIX4life and EUROPRACITCE
Imec SiN-Photonics was developed within PIX4life, a European open-access pilot line for Photonic Integrated Circuits (PICs) targeting life science applications in the visible range. PIX4life services are available through EUROPRACITCE.
A Primary Study of Electrostatic Actuated Switch using the Technology of PiezoMUMPs

Department of Microelectronics and Nanoelectronics, University of Malta, Malta

Contact: Mounira Bengashier
E-mail: mounira.bengashier.15@um.edu.mt
Technology: PiezoMUMPs
Die size: 11.15mm × 11.15mm
Design tools: CoventorWare

Description
A number of non-contact electrostatic actuated switches were designed using the PiezoMUMPs technology and submitted to EUROPRACTICE for fabrication. These switches are of different designs and having various geometries in order to analyse and minimise the Pullin voltage. This work is part of a Ph.D. research study on the design of piezoelectric tuneable MEMS lateral bulk acoustic wave resonators originally based on the thermal effect on the resonant frequency in order to explore the feasibility of fine frequency tuning. The possibility of fine tuning can be applied to high precision timing circuits such as frequency counters. The possibility of having a switchable array of different resonators in the same chip results in a cost-effective wider frequency range. These non-contact electrostatic switches were analytically studied and simulated using CoventorWare FEM.

Proposed Design Geometry
The switch was fabricated using MEMSCAP’s PiezoMUMPs Process. Figure 1 shows the first designed switch including the shape of one of the 4 springs having the following dimensions: Signal line, movable electrode gaps are 3.9 μm, Signal line, movable electrode Overlap is 110 μm, Gap between two actuation electrodes is 11.5 μm, Switch’s geometry (W, L, T) are (320, 500, 10) μm. The simulated pull-in voltage for designs having a different number of comb fingers obtained using CoventorWare FEM analyser tool are also shown in Figure 1. The pull-in voltage was further reduced to 21 V by reducing the spring stiffness. This was achieved by changing the spring geometry, having a length and width of 160 μm and 24 μm respectively.

Why EUROPRACTICE?
The EUROPRACTICE service offers affordable simple procedures to access the technology to produce MEMS prototypes for research purposes, and this service is always open to provide support and answer questions regarding technical issues encountered by the users.

Acknowledgement
We would like to acknowledge the Ministry of High Education in Libya for supporting the Ph.D. research work of Mounira Bengashier, which is currently being carried out at the Department of Microelectronics and Nanoelectronics at the University of Malta.
Z-axis MEMS Accelerometer for Vibrotactile Display Pad
Department of Electronic and Electrical Engineering, University of Bath, UK

Contacts: Dr Ali Mohammadi, Mr Steven Ng
E-mail: am3151@bath.ac.uk
Technology: X-FAB MEMS XMB10
Die size: 4mm × 2.5mm
Design tools: Coventor MEMS+, Cadence

Description
Assistive technologies such as Braille and swell papers have been evolved to digital tactile displays, which help the visually impaired (VI) individuals to receive graphical information through the sense of touch. At the University of Bath, we have developed a new high-resolution vibrotactile display technique following the feedback received from researchers in the Departments of Computer Science, Psychology and Education. Our technique allows one electromagnetic coil to selectively vibrate multiple smaller tactile pixels (taxels) based on their mechanical resonance frequency. This technique mitigates the resolution bottleneck of existing tactile displays.

We now investigate the integration of tactile sensing mechanism in the new actuator to control the vibration of tactile elements. This sensor will allow the implementation of a closed-loop control system to accurately track the resonance frequency of taxels. In addition, the proposed sensor will create an interactive and bilateral communication to receive tactile input from the user.

Thereby, we have embedded off-the-shelf piezoelectric sensors underneath the taxels to track the resonance frequency of the taxels. However, the bulky size of these sensors avoids using individual sensors especially in the high-resolution taxel configuration, whereby multiple taxels are implemented within a small area. In this project, we have designed capacitive MEMS sensors in XMB10 processes to measure the vibration of 3D printed taxels. The capacitive sensors built in XMB10 processes will measure the displacement of taxels in Z direction and supply the measured output as the feedback signal to the actuator input.

References

Acknowledgement to EUROPRACITE and X-FAB
EUROPRACTICE microfabrication and software services helped us to establish a new line of research in Microelectromechanical Systems (MEMS) at University of Bath. We highly appreciate the availability of technical guidance and expertise, choice of reliable microfabrication process technologies, and reasonable prices – all provided by EUROPRACTICE. The training programs for software and webinars for process technologies are extremely useful services. This project was specifically supported by the X-FAB and EUROPRACTICE MEMS Design Award in 2020.
A scanning diffraction grating for high performance gas sensing applications

University of Malta - Department of Microelectronics and Nanoelectronics, Msida, Malta

Designer: Russell Farrugia
Supervisor: Prof. Ivan Grech, Prof. Joseph Micallef
E-mail: russell.farrugia@um.edu.mt
Technology: X-FAB MEMS XMB10
Die size: 4.5mm × 2.2mm
Design tools: CoventorWare

Introduction
The University of Malta is currently developing an infrared Czerny-Turner spectrometer for multi-gas detection. In the spectrometer design of Figure 1, a collimated broadband IR source is directed towards a diffraction grating. The diffracted beam is then focused on to the detector plane using an imaging mirror. The spectral image is typically measured using an expensive linear photodetector array. The latter can be replaced by a single element photodetector with the implementation of a MEMS scanning diffraction grating. The design of a novel MEMS scanning grating was fabricated using the XFAB XMB10 process. Figure 2 depicts the layout of the 2.2 mm × 4.5 mm chip. The MEMS scanning grating enables the realization of a compact IR spectrometer for high speed, high resolution gas spectral analysis and eliminates the problems of cross-sensitivity and decay which characterize metal oxide gas sensors.

Description
The scanning grating of Figure 3 is designed to oscillate at a torsional out-of-plane resonant mode at a frequency of 2 kHz. The resonating micro-scanner is driven by angular vertical comb drive structures. The electrostatic and mirror plate structures are etched from the 30μm silicon device layer. A lamellar grating pattern is formed using the 5μm deep DRIE process step, typically intended for the fabrication of comb fingers with a reduced height. The aluminum layer, intended for wiring and bond pad metallization is considered in order to improve the reflectivity of the grating pattern. The scanning mirror plate is supported on either side by dual torsion beam structures. The torsion beams are optimized such that the torsional stiffness is minimized, and the lateral and out-of-plane bending stiffness is maximized. Lateral springs are also included in the scanning grating design to provide a degree of compliance against external forces along the rotational axis. Moreover, stoppers are added to the end of the torsion beams to limit excessive out-of-plane rotation.

Why EUROPRACTICE?
EUROPRACTICE provides doctoral students, researchers and academics with access to state-of-the-art MPW foundry services for the fabrication of MEMS/MOEMS device prototypes. The University of Malta has always been provided with the necessary technical feedback and expertise at every stage of the chip design process.

Acknowledgements
The authors would like to acknowledge imec/EUROPRACTICE for their support through the MEMS Design Contest for Users of chip design in X-FAB XMB10 technology and Malta Enterprise for their financial support as part of the PENTA project ESAIRQ.
Silicon MEMS comb-drive actuators for strain engineering
Dept. of Precision and Microsystems Engineering, Delft University of Technology, the Netherlands

Contacts: Sataadal Dutta, Peter G. Steeneken, Gerard J. Verbiest
E-mail: s.dutta-1@tudelft.nl
Technology: X-FAB MEMS XMB10
Die size: 3mm × 3mm
Design tools: Coventor MEMS+

Description
We designed a set of electrostatic comb drive actuators (Figs. 1, 2a) and piezo resistive MEMS actuators (Fig. 2b) in silicon, with varying configurations and geometry. These can be used to gain strain control in suspended metallic or semiconducting membranes for static as well as dynamic excitations. These are beneficial for the development of new sensors and increasing the outreach of standard silicon MEMS technology.

Micro-machined comb-drive (CD) actuators have been developed in the last years from highly p-doped silicon, which allows low-temperature operation [1][2]. The actuators are intended to be driven differentially to increase the range of linearity between small signal force and displacement. The XMB10 process allowed us to place silicon membranes of recessed height (in the vertical axis), which enabled us to integrate a vertical electrostatic gate with an air gap of 5μm. The strong bending thickness of the active layer allows us to gently push on the suspended comb without destroying it (Fig. 1). The relatively high p-doping is beneficial for the combs to be actuated both at room temperature and also at around liquid nitrogen temperature. An important parameter is the stroke of the interdigitated fingers. We need enough stroke to induce a few percent of strain in a membrane longer than 10 microns. The meshed design of the movable comb (Figs. 1, 2a) helps in reducing the inertial mass and thus increasing the stroke in the lateral direction. Further, we opted not to include the capping wafer during fabrication, and the yield of our devices was still very good (> 95 %). The exceptions were four broken devices with spring-structures of very high lateral aspect ratio (> 20). Various configurations of comb-drive actuators were implemented which can be used to generate both shear (uniaxial, radial) and torsional strain on the plane of the die. The process includes ohmic contacts to silicon, which allowed us to design piezo-resistive MEMS actuators, in the form of silicon loops connecting two bond pads (Fig. 2b), with the thinnest finger with being 2μm. The simulated fundamental eigenfrequency of the movable comb in our design was 39.15 kHz, with a total displacement of 0.15 μm for a bias of 10 V at 300 K.

Why EUROPRACITCE?
The EUROPRACITCE makes it easier and affordable for academia to access a wide range of foundry services under a common umbrella. The active design support is also valuable for research. The available component library of XMB10 and its consolidated process design kit with 3D design software such as Coventor MEMS+ helps the researchers to simplify and to improve the prototyping of active and passive devices by ensuring final top-quality.

Acknowledgment
We would like to thank the Plantenna research programme funded by the 4TU federation.

References
EUROPRACTICE MEMBERSHIP

Together with the funding provided by the European Commission, EUROPRACTICE needs additional support to provide high quality service to more than 600 European universities and research institutes. Membership Fees pay for extra staff supporting this requested stimulation activity for academic institutions (not fully paid by the EU). The annual Membership Fee is collected by STFC on behalf of the EUROPRACTICE project partners.

European universities and research institutes can choose from 4 different levels of membership:

1. **Full-IC annual membership: 1.100€**
 Allowing full access to all CAD tools, Design Kits and Libraries, MPW fabrication, mini@sic runs at reduced prices. This membership fee is split 600€ for the CAD part (including 100€ to administer the membership) and 500€ for the prototyping part.

2. **MPW-only annual membership: 600€**
 Allowing full access to all offered MPW runs at discounted pricing.

3. **Design tool only annual membership: 600€**
 Allowing full access to all the offered CAD tools only.

4. **FPGA-only annual membership: 200€**
 Allowing access to FPGA tools only e.g. Altera, Xilinx, and Synopsys Synplify.

The number of academic members consists of more than 600 institutes in more than 40 countries from the EMEA zone (Europe, Middle East and Africa).
<table>
<thead>
<tr>
<th>Country</th>
<th>University/Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosnia and Herzegovina</td>
<td>A46180 Universitet u Banjoj Luci</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>A40090 Technical University of Sofia</td>
</tr>
<tr>
<td>Croatia</td>
<td>A47680 Sveučilište u Zagrebu</td>
</tr>
<tr>
<td>Croatia</td>
<td>A47920 Sveučilište J.J. Strossmayera</td>
</tr>
<tr>
<td>Croatia</td>
<td>A48090 Sveučilište u Splitu</td>
</tr>
<tr>
<td>Cyprus</td>
<td>A07090 University of Cyprus</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>A40060 Ceske vysoke uceni technicke v Praze</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>A40070 Vysoke uceni technicke v Brne</td>
</tr>
<tr>
<td>Egypt</td>
<td>A14550 Ain Shams University</td>
</tr>
<tr>
<td>Egypt</td>
<td>A14670 Cairo University</td>
</tr>
<tr>
<td>Egypt</td>
<td>A15090 The German University in Cairo</td>
</tr>
<tr>
<td>Egypt</td>
<td>A15160 The American University in Cairo</td>
</tr>
<tr>
<td>Egypt</td>
<td>A15170 Egypt-Japan University of Science & Technology</td>
</tr>
<tr>
<td>Estonia</td>
<td>A40110 Tallinna Tehnikaülikool</td>
</tr>
<tr>
<td>Finland</td>
<td>A15740 Satakunnan ammattikorkeakoulou</td>
</tr>
<tr>
<td>Finland</td>
<td>A15560 Aalto-yliopisto</td>
</tr>
<tr>
<td>Finland</td>
<td>A15610 Tampereen teknillinen yliopisto</td>
</tr>
<tr>
<td>Finland</td>
<td>A35820 Dolen yliopisto</td>
</tr>
<tr>
<td>Finland</td>
<td>A39360 Turun yliopisto</td>
</tr>
<tr>
<td>France</td>
<td>A00110 Johannes Gutenberg Universität Mainz</td>
</tr>
<tr>
<td>France</td>
<td>A00240 Fachhochschule Köln</td>
</tr>
<tr>
<td>France</td>
<td>A00350 Justus Liebig-Universität Gießen</td>
</tr>
<tr>
<td>France</td>
<td>A00510 Hochschule Konstanz für Technik, Wirtschaft und Gestaltung</td>
</tr>
<tr>
<td>France</td>
<td>A00670 Hochschule Bremen</td>
</tr>
<tr>
<td>France</td>
<td>A00850 Justus Liebig-Universität Gießen</td>
</tr>
<tr>
<td>France</td>
<td>A01270 Technische Universität München - Fakultät für Physik (Garching)</td>
</tr>
<tr>
<td>Germany</td>
<td>A12270 Hochschule Albstadt-Sigmaringen</td>
</tr>
<tr>
<td>Germany</td>
<td>A12410 Fachhochschule Schmalkalden</td>
</tr>
<tr>
<td>Germany</td>
<td>A12440 Hochschule Pforzheim</td>
</tr>
<tr>
<td>Germany</td>
<td>A12540 Brandenburgische Technische Universität Cottbus</td>
</tr>
<tr>
<td>Germany</td>
<td>A12840 Bergische Universität Wuppertal</td>
</tr>
<tr>
<td>Germany</td>
<td>A13060 Albert-Ludwigs-Universität Freiburg - IMTEK</td>
</tr>
<tr>
<td>Germany</td>
<td>A13650 Technische Universität Darmstadt - Institut für Halbleitertechnik und Nanoelektronik (IHT)</td>
</tr>
<tr>
<td>Germany</td>
<td>A13660 Universität Bremen - Informatik</td>
</tr>
<tr>
<td>Germany</td>
<td>A13680 Technische Hochschule Aschaffenburg</td>
</tr>
<tr>
<td>Germany</td>
<td>A13890 Technische Universität Berlin - Institut für Technische Informatik und Mikroelektronik (TIME)</td>
</tr>
<tr>
<td>Germany</td>
<td>A14130 Fachhochschule Brandenburg</td>
</tr>
<tr>
<td>Germany</td>
<td>A14310 Universität Kassel - Fachbereich Elektrotechnik/Informatik</td>
</tr>
<tr>
<td>Germany</td>
<td>A14740 Universität Kassel</td>
</tr>
<tr>
<td>Germany</td>
<td>A14920 Universität Konstanz</td>
</tr>
<tr>
<td>Germany</td>
<td>A15030 Technische Hochschule für Angewandte Wissenschaften Hamburg</td>
</tr>
<tr>
<td>Germany</td>
<td>A15330 Carl von Ossietzky Universität Oldenburg - Energie und Halbleitersorschung (EHF)</td>
</tr>
</tbody>
</table>
A15410 Technische Hochschule Mittelhessen - Friedberg
A15500 Hochschule RheinMain
A15840 Hochschule Rosenheim
A15930 Fachhochschule Südwestfalen
A15950 Beuth Hochschule für Technik Berlin
A16030 Rhein-Westfälische Technische Hochschule Aachen - Lehrstuhl für Integrierte Photonik (IPH)
A16040 Rhein-Westfälische Technische Hochschule Aachen - Institut für Stromrichtertechnik und Elektrische Antriebe (ISRA)
A16060 Rhein-Westfälische Technische Hochschule Aachen - Institut für Theoretische Elektrotechnik (ITHE)
A16090 Westfälische Hochschule
A16100 Hochschule fuer Technik und Wirtschaft Berlin (HTW Berlin)
A16310 Technische Universität Bergakademie Freiberg
A16320 RWTH Aachen, Physikalisches Institut B
A16330 Hochschule Hannover
A16450 Universität Mannheim
A16490 Universität Bayreuth
A16520 Westfälische Wilhelms-Universität
A16590 RUB University of Applied Sciences
A35320 Technische Universität Hamburg-Harburg
A35400 Hochschule Ulm
A35420 Georg-Simon-Ohm Hochschule Nürnberg
A35430 Karlsruher Institut für Technologie
A35450 Technische Universität Darmstadt - Integrierte Elektronische Systeme (IES)
A35500 Eberhard Karls Universität Tübingen
A35590 Johannes-Wolfgang-Goethe-Universität Frankfurt am Main
A35600 Technische Universität Carolo-Wilhelmina zu Braunschweig
A35620 Universität Bremen - Institut für Theoretische Elektrotechnik und Mikroelektronik
A35640 Rhein-Westfälische Technische Hochschule Aachen - Institute for Communication Technologies and Embedded Systems (ICEA)
A35710 Hochschule Augsburg
A35810 Technische Universität Kaiserslautern
A35830 Universität Hamburg
A35990 Universität Duisburg-Essen
A36070 Carl von Ossietzky Universität Oldenburg - Informatik
A36440 Universität des Saarlandes
A37090 Technische Universität Dortmund
A37240 Hochschule Furtwangen
A37290 Leibniz Universität Hannover
A37310 Technische Universität Berlin
A37380 Friedrich-Alexander-Universität Erlangen-Nürnberg
A37390 Technische Universität München - Fakultät für Elektrotechnik und Informationstechnik München
A37440 Universität der Bundeswehr München
A37450 Hochschule Esslingen
A37500 Universität Paderborn
A37510 Hochschule für Angewandte Wissenschaften München
A37530 Humboldt-Universität zu Berlin
A37540 Universität Ulm
A37750 Technische Universität Dresden
A37800 Hochschule Offenburg
A37810 Rhein-Westfälische Technische Hochschule Aachen - Fakultät für Elektrotechnik und Informationstechnik
A37880 Hochschule Aalen
A37920 Hochschule Ravensburg-Weingarten
A37930 Hochschule Mannheim
A38010 Hochschule Heilbronn
A38030 Hochschule Darmstadt
A38080 Ruhr-Universität Bochum
A38090 Otto-von-Guericke-Universität Magdeburg
A38220 Universität Siegen
A38240 Technische Universität Ilmenau
A38340 Technische Universität Chemnitz
A38550 Ostfalia Hochschule für angewandte Wissenschaften
A38650 Fachhochschule Dortmund
A38890 Rheinische Friedrich-Wilhelms-Universität Bonn
A38940 Ernst-Abbe-Fachhochschule Jena
A39000 Technische Hochschule Mittelhessen - Gießen
A39070 Hochschule Karlsruhe - Technik und Wirtschaft
A39110 Universität Stuttgart
A39220 Universität Rostock
A39250 Ruprecht-Karls-Universität Heidelberg - ASIC
A39260 Albert-Ludwigs-Universität Freiburg
A39330 Hochschule Reutlingen
A39340 Martin-Luther-Universität Halle-Wittenberg
A39460 Christian-Albrechts-Universität zu Kiel
A39580 Hochschule Osnabrück
A39660 Friedrich-Schiller-Universität Jena
A39770 Universität zu Lübeck
R00150 Max-Planck-Institut für Physik
R20300 Institut für Mikroelektronik und Mechatronik - Systeme gemeinnützige GmbH
R20330 Deutsches Elektronen-Synchrotron
R20460 Institut für Mobil- und Satellitenfunktechnik GmbH
R20510 HTC GmbH - Leibniz-Institut für innovative Mikroelektronik
R20720 Oldenburger Forschungs- und Entwicklungsinstitut für Informatik-Werkezeuge und Systeme
R20880 GSI Helmholtzzentrum für Schwerionenforschung GmbH
R20890 Fraunhofer-Institut für Siliziumtechnologie
R20900 Fraunhofer-Institut für Biomedizinische Technik
R20920 Fraunhofer-Institut für Integrierte Schaltungen - Erlangen
R20930 Fraunhofer-Institut für Integrierte Schaltungen - Dresden
R21050 Max-Planck-Institut für Chemie
R21060 Forschungszentrum Jülich
R21090 Fraunhofer Heinrich-Hertz-Institut
R21120 Max-Planck-Institut für extraterrestrische Physik
R21150 Physikalisch-Technische Bundesanstalt - Braunschweig
R21220 Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie
R21260 Hochschule für Technik und Wirtschaft Dresden
R21310 Fraunhofer-Institut für Photonische Mikrosysteme
R21320 Fraunhofer-Institut für Solare Energiesysteme
R21510 Deutsches Zentrum für Luft- und Raumfahrt - Berlin
R21530 Deutsches Zentrum für Luft- und Raumfahrt - Bremen
R21580 Deutsches Zentrum für Luft- und Raumfahrt ILF - Berlin
R21610 Helmholtz-Zentrum Berlin für Materialien und Energie
R21620 Fraunhofer-Einrichtung für Angewandte und Integrierte Sicherheit
R21630 Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren
R21650 Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik
R21660 Fraunhofer-Einrichtung für Systeme der Kommunikationstechnik
R21700 Konrad-Zuse-Zentrum für Informationstechnik Berlin
R21780 Deutsches Zentrum für Luft- und Raumfahrt - Wessling
R21790 NaMLab gGmbH
R21900 Max-Planck-Institut für Radioastronomie
R21970 PNSensor gGmbH
R21980 Fraunhofer-Institut für Mikrosysteme und Festkörper-Technologien EMFT
R22020 European XFEL
R22080 Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
R22110 Physikalisch-Technische Bundesanstalt - Berlin
R22150 Fraunhofer Institute SFF
R22160 Halbleiterlabor der Max Planck Gesellschaft
R22260 Helmholtz-Zentrum Geesthacht
R22290 Fraunhofer-Institut für Mikrosysteme und Festkörper-Technologien EMFT
A31280 Università degli Studi di Udine
A14220 Università degli Studi di Trento
A14800 Università degli Studi di Milano-Bicocca
A14820 Università degli Studi di Salerno
A14860 Università degli Studi di Modena e Reggio Emilia - Reggio Emilia
A15070 Scuola Superiore di Studi Universitari e di Perfezionamento Sant'Anna
A15750 Università Degli Studi di Cassino e del Lazio Meridionale
A15900 Università di Bologna - Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi" (Cesena)
A16130 Università degli Studi Roma Tre
A16460 Politecnico di Bari
A16570 University of Bologna
A35210 Università degli Studi di Parma
A35530 Politecnico di Torino
A35660 Università di Pisa
A35690 Politecnico di Milano
A35910 Università degli Studi di Genova
A36380 Università di Bologna - Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi" (Bologna)
A37280 Università degli Studi di Pavia
A37460 Università degli Studi di Catania
A38380 Politecnico di Bari
A38620 Università degli Studi di Torino
A38840 Università degli Studi di Roma "La Sapienza"
A39200 Università degli Studi di Padova
A39410 Università degli Studi dell'Aquila
A39550 Università degli Studi di Firenze
A39570 Università degli Studi di Cagliari
A40010 Fondazione Bruno Kessler
A00270 Istituto Nazionale di Fisica Nucleare, Sezione di Genova
A00300 Istituto Nazionale di Fisica Nucleare, Sezione di Pisa
A20310 Istituto Nazionale di Fisica Nucleare, Sezione di Roma
A20320 Istituto Nazionale di Fisica Nucleare, Sezione di Roma II
A20400 Istituto Nazionale di Fisica Nucleare, Sezione di Bologna
A20420 Istituto Nazionale di Fisica Nucleare, Sezione di Trieste
A20440 Istituto Nazionale di Fisica Nucleare, Sezione di Torino
A20450 Istituto Nazionale di Fisica Nucleare, Laboratori Nationali di Frascati
A20470 Istituto Nazionale di Fisica Nucleare, Sezione di Padova
A20550 Elettra-Sincrotrone Trieste
A20560 Istituto Nazionale di Fisica Nucleare, Sezione di Roma III
A20580 Istituto Nazionale di Fisica Nucleare, Laboratori Nationali di Legnaro
A20630 Istituto Nazionale di Fisica Nucleare, Sezione di Milano
A20670 Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari
A20710 Istituto Nazionale di Fisica Nucleare, Sezione di Bari
A20990 Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara
A21100 Istituto Nazionale di Fisica Nucleare, Sezione di Napoli
A21160 Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri
A21190 Istituto Nazionale di Fisica Nucleare, Laboratori Nationali del Gran Sasso
R21300 Consiglio Nazionale delle Richerche, Istituto per la Microelettronica e i Microsistemi
A21450 Istituto Nazionale di Fisica Nucleare, Sezione di Pavia
A21570 Istituto Nazionale di Astrofisica, Istituto di Radioastronomia
A21600 Istituto Italiano di Technologia
A21800 Consiglio Nazionale delle Richerche, Istituto per la Microelettronica e i Microsistemi Roma
A21940 The Abdus Salam International Centre for Theoretical Physics
A22010 Istituto Nazionale di Astrofisica Osservatorio Astronomico di Cagliari
R22070 Instituto per lo Studio dei Materiali Nanostrutturati
R22120 Istituto Nazionale di Astrofisica - Istituto di Radioastronomia - Radiotelescopi di Medicina
<table>
<thead>
<tr>
<th>Country</th>
<th>Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovakia</td>
<td>R22460 Consorcio ESS Bilbao</td>
</tr>
<tr>
<td></td>
<td>R22100 Centro Nacional de Supercomputación, Barcelona</td>
</tr>
<tr>
<td></td>
<td>R21910 Instituto de Tecnologías Físicas y de la Información</td>
</tr>
<tr>
<td></td>
<td>R21740 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas</td>
</tr>
<tr>
<td></td>
<td>R21550 Institut de Ciències Fotòniques</td>
</tr>
<tr>
<td></td>
<td>R21520 Institut de Ciències de L'Espai</td>
</tr>
<tr>
<td></td>
<td>R21230 Instituto de Física Corpuscular</td>
</tr>
<tr>
<td></td>
<td>R20850 Centro Tecnológico de Telecomunicaciones de Catalunya</td>
</tr>
<tr>
<td></td>
<td>R21200 Centro Nacional de Supercomputación, Barcelona</td>
</tr>
<tr>
<td></td>
<td>A39540 Universidad Carlos III de Madrid</td>
</tr>
<tr>
<td></td>
<td>A39390 Universitat Autònoma de Madrid</td>
</tr>
<tr>
<td></td>
<td>A39180 Universitat Rovira i Virgili</td>
</tr>
<tr>
<td></td>
<td>A39150 Universitat Politècnica de Catalunya - Departamento de Informática y Sistemas</td>
</tr>
<tr>
<td></td>
<td>A39100 Universidad Pública de Navarra</td>
</tr>
<tr>
<td></td>
<td>A39150 Universidad Politécnica de Catalunya - Departamento de Ingeniería Electrónica (Campus Nord)</td>
</tr>
<tr>
<td></td>
<td>A39190 Universidad Rovira i Virgili</td>
</tr>
<tr>
<td></td>
<td>A39390 Universitat Autònoma de Madrid</td>
</tr>
<tr>
<td></td>
<td>A39540 Universidad Carlos III de Madrid</td>
</tr>
<tr>
<td></td>
<td>A38820 Universidad Politécnica de Madrid - Centro de Electrónica Industrial</td>
</tr>
<tr>
<td></td>
<td>A39060 Universidad de Granada</td>
</tr>
<tr>
<td></td>
<td>A38600 Universidad de Navarra</td>
</tr>
<tr>
<td></td>
<td>A38660 Universidad de Barcelona</td>
</tr>
<tr>
<td></td>
<td>A38780 Universidad de Las Palmas de Gran Canaria - Departamento de Informática y Sistemas</td>
</tr>
<tr>
<td></td>
<td>A38790 Universidad de Zaragoza - Facultad de Ciencias</td>
</tr>
<tr>
<td></td>
<td>A38820 Universidad Politécnica de Madrid - Centro de Electrónica Industrial</td>
</tr>
<tr>
<td></td>
<td>A39080 Universidad de Extremadura</td>
</tr>
<tr>
<td></td>
<td>A39100 Universidad Pública de Navarra</td>
</tr>
<tr>
<td></td>
<td>A39150 Universidad Politécnica de Catalunya - Departamento de Ingeniería Electrónica (Campus Nord)</td>
</tr>
<tr>
<td></td>
<td>A39190 Universidad Rovira i Virgili</td>
</tr>
<tr>
<td></td>
<td>A39390 Universitat Autònoma de Madrid</td>
</tr>
<tr>
<td></td>
<td>A39540 Universidad Carlos III de Madrid</td>
</tr>
<tr>
<td></td>
<td>R00060 CNM - Instituto de Microelectrónica de Barcelona</td>
</tr>
<tr>
<td></td>
<td>R20700 Ercol</td>
</tr>
<tr>
<td></td>
<td>R20850 Centro Tecnológico de Telecomunicaciones de Catalunya</td>
</tr>
<tr>
<td></td>
<td>R21230 Instituto de Física Corpuscular</td>
</tr>
<tr>
<td></td>
<td>R21520 Institut de Ciències de L'Espai</td>
</tr>
<tr>
<td></td>
<td>R21550 Institut de Ciències Fotòniques</td>
</tr>
<tr>
<td></td>
<td>R21740 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas</td>
</tr>
<tr>
<td></td>
<td>R21910 Instituto de Tecnologías Físicas y de la Información</td>
</tr>
<tr>
<td></td>
<td>R22100 Centro Nacional de Supercomputación, Barcelona</td>
</tr>
<tr>
<td></td>
<td>R22460 Consorcio ESS Bilbao</td>
</tr>
<tr>
<td></td>
<td>R22470 Asociacion Centro Tecnológico</td>
</tr>
<tr>
<td></td>
<td>R22600 Centro Tecnológico de Automación de Galicia</td>
</tr>
<tr>
<td></td>
<td>A00260 Luleå tekniska universitet</td>
</tr>
<tr>
<td></td>
<td>A13720 Uppsala universitet</td>
</tr>
<tr>
<td></td>
<td>A16350 Stockholm universitet</td>
</tr>
<tr>
<td></td>
<td>A16360 Kungliga Tekniska Högskolan, Stockholm</td>
</tr>
<tr>
<td></td>
<td>A37350 Linköpings universitet</td>
</tr>
<tr>
<td></td>
<td>A37370 Lund universitet</td>
</tr>
<tr>
<td></td>
<td>A38518 Kungliga Tekniska högskola, Kista</td>
</tr>
<tr>
<td></td>
<td>A38670 Chalmers Tekniska högskola</td>
</tr>
<tr>
<td></td>
<td>A39840 Mittuniversitetet</td>
</tr>
<tr>
<td></td>
<td>R20690 Research Institutes of Sweden, ICT Acreo</td>
</tr>
<tr>
<td></td>
<td>R20910 Totalförsvarets forskningsinstitut FOI</td>
</tr>
<tr>
<td></td>
<td>R21700 MAX IV Laboratory</td>
</tr>
<tr>
<td></td>
<td>R21990 European Spallation Source</td>
</tr>
<tr>
<td></td>
<td>R20550 Institutet för Rymdfysik</td>
</tr>
<tr>
<td></td>
<td>A39880 Fachhochschule Nordwestschweiz</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>R20680 Centre Suisse d'Electronique et Microtechnique - Neuchâtel</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>A38140 Bern Hochschule</td>
</tr>
<tr>
<td></td>
<td>A38800 Eidgenössische Technische Hochschule Zürich - Basel</td>
</tr>
<tr>
<td></td>
<td>A39760 Haute école du paysage et d'architecture de Genève</td>
</tr>
<tr>
<td></td>
<td>A39820 Fachhochschule Nordwestschweiz</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>R20680 Centre Suisse d'Electronique et Microtechnique - Neuchâtel</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>A38140 Bern Hochschule</td>
</tr>
<tr>
<td></td>
<td>A38800 Eidgenössische Technische Hochschule Zürich - Basel</td>
</tr>
<tr>
<td></td>
<td>A39760 Haute école du paysage et d'architecture de Genève</td>
</tr>
<tr>
<td></td>
<td>A39820 Fachhochschule Nordwestschweiz</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>R20680 Centre Suisse d'Electronique et Microtechnique - Neuchâtel</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>A38140 Bern Hochschule</td>
</tr>
<tr>
<td></td>
<td>A38800 Eidgenössische Technische Hochschule Zürich - Basel</td>
</tr>
<tr>
<td></td>
<td>A39760 Haute école du paysage et d'architecture de Genève</td>
</tr>
<tr>
<td></td>
<td>A39820 Fachhochschule Nordwestschweiz</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>R20680 Centre Suisse d'Electronique et Microtechnique - Neuchâtel</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>A38140 Bern Hochschule</td>
</tr>
<tr>
<td></td>
<td>A38800 Eidgenössische Technische Hochschule Zürich - Basel</td>
</tr>
<tr>
<td></td>
<td>A39760 Haute école du paysage et d'architecture de Genève</td>
</tr>
<tr>
<td></td>
<td>A39820 Fachhochschule Nordwestschweiz</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>R20680 Centre Suisse d'Electronique et Microtechnique - Neuchâtel</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>A38140 Bern Hochschule</td>
</tr>
<tr>
<td></td>
<td>A38800 Eidgenössische Technische Hochschule Zürich - Basel</td>
</tr>
<tr>
<td></td>
<td>A39760 Haute école du paysage et d'architecture de Genève</td>
</tr>
<tr>
<td></td>
<td>A39820 Fachhochschule Nordwestschweiz</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>R20680 Centre Suisse d'Electronique et Microtechnique - Neuchâtel</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>A38140 Bern Hochschule</td>
</tr>
<tr>
<td></td>
<td>A38800 Eidgenössische Technische Hochschule Zürich - Basel</td>
</tr>
<tr>
<td></td>
<td>A39760 Haute école du paysage et d'architecture de Genève</td>
</tr>
<tr>
<td></td>
<td>A39820 Fachhochschule Nordwestschweiz</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>R20680 Centre Suisse d'Electronique et Microtechnique - Neuchâtel</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>A38140 Bern Hochschule</td>
</tr>
<tr>
<td></td>
<td>A38800 Eidgenössische Technische Hochschule Zürich - Basel</td>
</tr>
<tr>
<td></td>
<td>A39760 Haute école du paysage et d'architecture de Genève</td>
</tr>
<tr>
<td></td>
<td>A39820 Fachhochschule Nordwestschweiz</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>R20680 Centre Suisse d'Electronique et Microtechnique - Neuchâtel</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>A38140 Bern Hochschule</td>
</tr>
<tr>
<td></td>
<td>A38800 Eidgenössische Technische Hochschule Zürich - Basel</td>
</tr>
<tr>
<td></td>
<td>A39760 Haute école du paysage et d'architecture de Genève</td>
</tr>
<tr>
<td></td>
<td>A39820 Fachhochschule Nordwestschweiz</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>R20680 Centre Suisse d'Electronique et Microtechnique - Neuchâtel</td>
</tr>
<tr>
<td></td>
<td>R20350 Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td></td>
<td>A38140 Bern Hochschule</td>
</tr>
<tr>
<td></td>
<td>A38800 Eidgenössische Technische Hochschule Zürich - Basel</td>
</tr>
<tr>
<td></td>
<td>A39760 Haute école du paysage et d'architecture de Genève</td>
</tr>
<tr>
<td></td>
<td>A39820 Fachhochschule Nordwestschweiz</td>
</tr>
<tr>
<td>EUROPRACTICE</td>
<td>list of members</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tunisia</th>
</tr>
</thead>
<tbody>
<tr>
<td>A12930 Ecole Nationale d’ingénieurs de Sfax</td>
</tr>
<tr>
<td>A15300 Ecole Nationale d’ingénieurs de Tunis</td>
</tr>
<tr>
<td>R22570 Center for Research in Microelectronics and Nanotechnology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>A13010 Sabanci Universitesi</td>
</tr>
<tr>
<td>A11270 Hacettepe Universitesi</td>
</tr>
<tr>
<td>A13820 Koc Universitesi</td>
</tr>
<tr>
<td>A14250 Yeditepe Universitesi</td>
</tr>
<tr>
<td>A14730 TOBB Ekonomi ve Teknoloji Universitesi</td>
</tr>
<tr>
<td>A15280 Orta Dogu Teknik Universitesi Kuzey Kibris Kampusu</td>
</tr>
<tr>
<td>A15670 Ankara Yildirim Beyazit Universitesi</td>
</tr>
<tr>
<td>A15870 Istanbul Bilgi Universitesi</td>
</tr>
<tr>
<td>A15970 Ozyegin Universitesi</td>
</tr>
<tr>
<td>A16250 Istanbul Medipol Universitesi</td>
</tr>
<tr>
<td>A16530 Maltepe University</td>
</tr>
<tr>
<td>A17960 Istanbul Teknik Universitesi</td>
</tr>
<tr>
<td>A36270 Iscan Dogramaci Bilkent Universitesi</td>
</tr>
<tr>
<td>A38440 Orta Dogu Teknik Universitesi</td>
</tr>
<tr>
<td>A39170 Bogazici Universitesi</td>
</tr>
<tr>
<td>R20360 Türkiye Bilimsel ve Teknik Arastirma Kurumu Uzay Teknolojileri Arastirma Enstitusu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>A12260 University of Dundee</td>
</tr>
<tr>
<td>A12480 University of Bath</td>
</tr>
<tr>
<td>A13480 Imperial College London</td>
</tr>
<tr>
<td>A13510 Royal Holloway University of London</td>
</tr>
<tr>
<td>A13520 University College London</td>
</tr>
<tr>
<td>A13590 University of Manchester Jodrell Bank Observatory</td>
</tr>
<tr>
<td>A14580 University of Lincoln</td>
</tr>
<tr>
<td>A14750 UCL Mullard Space Science Laboratory</td>
</tr>
<tr>
<td>A14760 University of Leicester</td>
</tr>
<tr>
<td>A14980 Queen Mary University of London</td>
</tr>
<tr>
<td>A15390 The Open University</td>
</tr>
<tr>
<td>A15450 Cardiff University</td>
</tr>
<tr>
<td>A15790 City University London</td>
</tr>
<tr>
<td>A15850 Nottingham Trent University</td>
</tr>
<tr>
<td>A16000 Coventry University</td>
</tr>
<tr>
<td>A16050 Cranfield University</td>
</tr>
<tr>
<td>A16540 University College London, Stanmore</td>
</tr>
<tr>
<td>A16580 University of Chester</td>
</tr>
<tr>
<td>A35030 Sheffield Hallam University</td>
</tr>
<tr>
<td>A35080 University of Manchester</td>
</tr>
<tr>
<td>A35110 University of Sussex</td>
</tr>
<tr>
<td>A35180 University of Nottingham</td>
</tr>
<tr>
<td>A35200 University of Aberdeen</td>
</tr>
<tr>
<td>A35250 University of Westminster</td>
</tr>
<tr>
<td>A35330 Newcastle University</td>
</tr>
<tr>
<td>A35410 University of Hull</td>
</tr>
<tr>
<td>A35440 University of Essex</td>
</tr>
<tr>
<td>A35470 University of Sheffield</td>
</tr>
<tr>
<td>A35520 Northumbria University</td>
</tr>
<tr>
<td>A35630 University of Kent</td>
</tr>
<tr>
<td>A35780 University of Cambridge</td>
</tr>
<tr>
<td>A36000 University of Bristol</td>
</tr>
<tr>
<td>A36090 University of Ulster</td>
</tr>
<tr>
<td>A36120 University of Strathclyde</td>
</tr>
<tr>
<td>A36280 Brunel University</td>
</tr>
<tr>
<td>A36341 University of Liverpool</td>
</tr>
<tr>
<td>A36342 Liverpool John Moores University</td>
</tr>
<tr>
<td>A37300 University of Birmingham</td>
</tr>
<tr>
<td>A37320 University of Oxford</td>
</tr>
<tr>
<td>A37400 University of Huddersfield</td>
</tr>
<tr>
<td>A37420 University of Edinburgh</td>
</tr>
<tr>
<td>A37430 University of the West of England</td>
</tr>
<tr>
<td>A37490 Queen’s University of Belfast</td>
</tr>
<tr>
<td>A37570 University of Surrey</td>
</tr>
<tr>
<td>A37600 University of Hertfordshire</td>
</tr>
<tr>
<td>A37610 University of Southampton</td>
</tr>
<tr>
<td>A37630 University of Warwick</td>
</tr>
<tr>
<td>A37660 Swansea Metropolitan University</td>
</tr>
<tr>
<td>A37730 University of Leeds</td>
</tr>
<tr>
<td>A37780 University of South Wales</td>
</tr>
<tr>
<td>A37840 University of Durham</td>
</tr>
<tr>
<td>A37870 Swansea University</td>
</tr>
<tr>
<td>A37900 Manchester Metropolitan University</td>
</tr>
<tr>
<td>A38040 Oxford Brookes University</td>
</tr>
<tr>
<td>A38450 Loughborough University</td>
</tr>
<tr>
<td>A38810 University of York</td>
</tr>
<tr>
<td>A39440 University of Glasgow</td>
</tr>
<tr>
<td>A39450 Aston University</td>
</tr>
<tr>
<td>A39460 University of Salford</td>
</tr>
<tr>
<td>R00050 STFC Rutherford Appleton Laboratory</td>
</tr>
<tr>
<td>R20600 STFC Daresbury Laboratory</td>
</tr>
<tr>
<td>R20950 Diamond Light Source</td>
</tr>
<tr>
<td>R22030 STFC UK Astronomy Technology Centre</td>
</tr>
<tr>
<td>R22090 Culham Centre for Fusion Energy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ukraine</th>
</tr>
</thead>
<tbody>
<tr>
<td>A47610 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uzbekistan</th>
</tr>
</thead>
<tbody>
<tr>
<td>A16380 Urganch State University</td>
</tr>
<tr>
<td>A16590 Andizhan State University</td>
</tr>
</tbody>
</table>

| EUROPRACTICE | list of members | 59 |
For general information or enquiries about EUROPRACTICE, please contact the project coordination team at imec.

Romano Hoofman (general)
Tel: +32 (0) 16 283865
E-mail: mpc@imec.be

Paul Malisse (operational)
Tel: +32 (0) 16 281272
E-mail: mpc@imec.be

Wendy Fannes (legal)
Tel: +32 (0) 16 281571
E-mail: epsec@imec.be

For enquiries about EUROPRACTICE academic membership, design tools or training courses, please contact the Microelectronics Support Centre, STFC Rutherford Appleton Laboratory, or:

Mark Willoughby (design tools)
Tel: +44 (0) 1235 445327
E-mail: MicroelectronicsCentre@stfc.ac.uk

Clive Holmes (training courses)
Tel: +44 (0) 1235 445327
E-mail: MicroelectronicsCentre@stfc.ac.uk

Richard Bishop (academic membership)
Tel: +44 (0) 1235 445327
E-mail: MicroelectronicsCentre@stfc.ac.uk

For enquiries about EUROPRACTICE smart system integration, please contact Smart Systems Integration service center:

Ramsey Selim (general)
Tel: +333 21 234 6613
E-mail: europractice.gateway@tyndall.ie

For more specific enquiries concerning technology access, MPW schedules, and related customer support, please contact one of the following EUROPRACTICE support centers.

ON Semiconductor:
Greta Milczanowska
Tel: +32 (0) 16 281274
E-mail: Greta.Milczanowska@imec.be

TSMC Technologies
Tobias Vanderhenst
Tel: +32 (0)16 287889
E-mail: eptsmc@imec.be

UMC Technologies
Erwin Deumens
Tel: +32 (0)16 281930
E-mail: epumc@imec.be

X-FAB & MEMS Technologies
Pieter Claes
Tel: +32 (0)16 288770
E-mail: epxfab@imec.be

Si-Photonics Technologies
Mateo Aranda Moran
Tel: +32 (0)16 283045
E-mail: epsiphot@imec.be

SiN-Photonics Technologies
Adil Masood
Tel: +32 (0)16 288054
E-mail: sinmpw@imec-int.com

GaN-IC Technology
Maritza Tangarife Ortiz
Tel: +32 (0)16 281372
E-mail: ganmpw@imec-int.com

ams Technologies
Elvira Liandres
Tel: +49 (0)9131 776-4464
E-mail: virtualasic@iis.fraunhofer.de

GLOBALFOUNDRIES Technologies
Vikas Vijaya Kumar
Tel: +49 (0)131 776-4418
E-mail: virtualasic@iis.fraunhofer.de

IHP Technologies
Elvira Liandres
Tel: +49 (0)9131 776-4464
E-mail: virtualasic@iis.fraunhofer.de

X-FAB Technologies
Stefan Rudischhauser
Tel: +49 (0)9131 776-4422
E-mail: virtualasic@iis.fraunhofer.de

GaN-IC Technology
Maritza Tangarife Ortiz
Tel: +33 (0)16 281372
E-mail: ganmpw@imec-int.com

ams Technologies
Kholdoun Torki
Tel: +33-476 574615
E-mail: kholdoun.torki@mycmp.fr

EM Microelectronic Technologies
Nicolas Partenza
Tel: +33-476 528919
E-mail: nicolas.partenza@mycmp.fr

ON Semiconductor Technologies
François Berthollet
Tel: +33-476 574621
E-mail: francois.berthollet@mycmp.fr

STMicroelectronics Technologies
Jean-François Paillotin
Tel: +33-476 574797
E-mail: jean-francois.paillotin@mycmp.fr

MEMS Technologies
Kholdoun Torki
Tel: +33-476 574615
E-mail: kholdoun.torki@mycmp.fr

Si-Photonics Technologies
François Berthollet
Tel: +33-476 574621
E-mail: francois.berthollet@mycmp.fr
The EUROPRACTICE Service has received funding from the European Union through the H2020 framework program for research, technological development and demonstration under grant agreement N° 825121.

This funding is exclusively used to support European SMEs, universities and research laboratories.
The EUROPRACTICE service has received funding from the European Union’s H2020 for research, technological development and demonstration under grant agreement N° 825121.

This funding is exclusively used to support European SMEs, universities and research laboratories.

All information for fabrication support, MPW run schedules and prices is available on our Technology & Fabrication website www.europractice-ic.com

Design tools are available to Academic Institutions and publicly funded Research Laboratories in the EMEA region. More information can be obtained on our Design Tool & Training website www.europractice.stfc.ac.uk

For more information, please contact one of our EUROPRATICE service centers.

imec
General EUROPRATICE-IC office & IC Manufacturing Center
p.a. P. Malisse
Kapeldreef 75
B3001 Leuven, Belgium
Tel: +32 16 281 272
E-mail: mpc@imec.be
http://www.europractice-ic.com

UKRI-STFC
Microelectronics Support Centre – EUROPRATICE EDA tools and training office
p.a. M. Willoughby
Rutherford Appleton Laboratory
Didcot, Oxfordshire, OX11 0QX, United Kingdom
Tel: +44 (0)1235 44 5327
E-mail: MicroelectronicsCentre@stfc.ac.uk
http://www.europractice.stfc.ac.uk

Fraunhofer IIS
IC Manufacturing Center
p.a. T. Drischel
Am Wolfsmantel 33
D91058 Erlangen, Germany
Tel: +49 9131 776 4463
E-mail: virtual-asic@iis.fraunhofer.de
https://www.iis.fraunhofer.de/en/ff/sse/icd/leist/found.html

CMP
IC Manufacturing service center
p.a. K. Torki
46, Avenue Félix Viallet
F-38031 Grenoble, France
Tel: +33 476 574 617
E-mail: cmp@mycmp.fr
https://mycmp.fr/

Tyndall National Institute
Smart Systems Integration service center
p.a. R. Selim
Maltings Complex Dyke Parade,
Cork, T12 R5CP, Ireland
Tel: +353 (21) 234 6613
E-mail: europractice.gateway@tyndall.ie
https://www.tyndall.ie/packaging